Preview

Клиническая медицина

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Хитиназа-3-подобный белок 1 (CHI3L1, YKL-40) при сердечно-сосудистой патологии

https://doi.org/10.30629/0023-2149-2024-102-9-10-698-706

Аннотация

Сердечно-сосудистые заболевания (ССЗ) представляют собой глобальную медицинскую, социальную и экономическую проблему. В настоящее время продолжаются поиск и изучение новых биологических маркеров, которые способны обеспечить раннюю диагностику ССЗ, служить лабораторным инструментом оценки эффективности проводимого лечения или использоваться в качестве прогностических маркеров и критериев стратификации риска. Интерес ученых сосредоточен на изучении хитиназы-3-подобного белка 1 (CHI3L1, YKL-40) при ССЗ. Точные данные о роли CHI3L1 как в норме, так и при патологических состояниях до сих пор остаются не ясными. Имеющиеся данные свидетельствуют о том, что CHI3L1, возможно, регулирует пролиферацию, дифференцировку клеток, программируемую клеточную гибель, а также участвует в эмбриональном развитии, ангиогенезе, воспалительных реакциях, ремоделировании тканей,  и ряде других процессов. Согласно данным проведенных клинических исследований, CHI3L1 является перспективной молекулой, обладающей диагностическим и прогностическим потенциалом при ССЗ. Окончательное подтверждение роли CHI3L1 при сердечно-сосудистой патологии будет получено в результате будущих исследований.

Об авторах

А. М. Алиева
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Алиева Амина Магомедовна — канд. мед. наук, доцент

Москва



Р. К. Валиев
ГБУЗ «Московский клинический научный центр имени А.С. Логинова Департамента здравоохранения города Москвы»
Россия

Валиев Рамиз Камраддинович — канд. мед. наук

Москва



И. Е. Байкова
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Байкова Ирина Евгеньевна — канд. мед. наук, доцент

Москва



Н. В. Теплова
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Теплова Наталья Вадимовна — д-р мед. наук, профессор

Москва



Л. М. Шнахова
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)
Россия

Шнахова Лидия Мухамедовна — врач

Москва



М. Н. Сарыев
ГБУЗ «Московский клинический научный центр имени А.С. Логинова Департамента здравоохранения города Москвы»
Россия

Сарыев Мухаммет Нурыевич — врач

Москва



И. А. Котикова
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Котикова Ирина Александровна — студентка,

Москва



И. Г. Никитин
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Никитин Игорь Геннадиевич — д.м.н., профессор

Москва



Список литературы

1. Roth G.A., Mensah G.A., Johnson C.O., Addolorato G., Ammirati E., Baddour L.M. et al. GBD-NHLBI-JACC Global burden of cardiovascular diseases writing group. Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020;76(25):2982–3 021. DOI: 10.1016/j.jacc.2020.11.010

2. Deng P., Fu Y., Chen M., Wang D., Si L. Temporal trends in inequalities of the burden of cardiovascular disease across 186 countries and territories. Int. J. Equity Health. 2023;22(1):164. DOI: 10.1186/s12939-023-01988-2

3. Silva S., Fatumo S., Nitsch D. Mendelian randomization studies on coronary artery disease: a systematic review and meta-analysis. Syst. Rev. 2024;13(1):29. DOI: 10.1186/s13643-023-02442-8

4. Kim S.J., Mesquita F.C.P., Hochman-Mendez C. New biomarkers for cardiovascular disease. Tex. Heart Inst. J. 2023;50(5):e238178. DOI: 10.14503/THIJ-23-8178

5. Голухова Е.З., Теряева Н.Б., Алиева А.М. Натрийуретические пептиды — маркеры и факторы прогноза при хронической сердечной недостаточности. Креативная кардиология. 2007;1– 2:126–136.

6. Голухова Е.З., Алиева А.М. Клиническое значение определения натрийуретических пептидов у больных с хронической сердечной недостаточностью. Кардиология и сердечнососудистая хирургия. 2007;47(1):45–51.

7. Blazevic N., Rogic D., Pelajic S., Miler M., Glavcic G., Ratkajec V.et al. YKL-40 as a biomarker in various inflammatory diseases: A review. Biochem. Med. (Zagreb). 2024;34(1):010502. DOI: 10.11613/BM.2024.010502

8. Zhang Y., Tian J., Ni J., Wei M., Li T., Shi J. Peripheral blood and cerebrospinal fluid levels of YKL-40 in alzheimer’s disease: a systematic review and meta-analysis. Brain Sci. 2023;13(10):1364. DOI: 10.3390/brainsci13101364

9. Specjalski K., Romantowski J., Niedoszytko M. YKL-40 as a possible marker of neutrophilic asthma. Front Med. (Lausanne). 2023;10:1115938. DOI: 10.3389/fmed.2023.1115938

10. Albeltagy E.S., Abdul-Mohymen A.M., Taha D.R.A. Early diagnosis of acute kidney injury by urinary YKL-40 in critically ill patients in ICU: a pilot study. Int. Urol. Nephrol. 2020;52:351–61. DOI: 10.1007/s11255-019-02364-2

11. Tizaoui K., Yang J.W., Lee K.H., Kim J.H., Kim M., Yoon S.et al.. The role of YKL-40 in the pathogenesis of autoimmune diseases: a comprehensive review. Int. J. Biol. Sci. 2022;18(9):3731–3746. DOI: 10.7150/ijbs.67587

12. Deng Y., Li G., Chang D., Su X. YKL-40 as a novel biomarker in cardio-metabolic disorders and inflammatory diseases. Clin. Chim. Acta. 2020;511:40–46. DOI: 10.1016/j.cca.2020.09.035

13. Luo W., Zhang L., Sheng L., Zhang Z., Yang Z. Increased levels of YKL-40 in patients with diabetes mellitus: a systematic review and meta-analysis. Diabetol. Metab. Syndr. 2021;13(1):6. DOI: 10.1186/s13098-021-00624-9

14. Ünal Çetin E., Kamiş F., Çetin A.U., Beyazit Y., Kekilli M. Serum chitotriosidase and YKL-40 in acute pancreatitis: Reliability as prognostic marker for disease severity and correlation with inflammatory markers. Turk. J. Med. Sci. 2021;51:3038–46. DOI: 10.3906/sag-2106-59

15. Wang S., Hu M., Qian Y., Jiang Z., Shen L., Fu L., Hu Y. CHI3L1 in the pathophysiology and diagnosis of liver diseases. Biomed. Pharmacother. 2020;131:110680. DOI: 10.1016/j.biopha.2020.110680

16. Yu J.E., Yeo I.J., Han S.B., Yun J., Kim B., Yong Y.J.et al. Significance of chitinase-3-like protein 1 in the pathogenesis of inflammatory diseases and cancer. Exp. Mol. Med. 2024. DOI: 10.1038/s12276-023-01131-9

17. Mazur M., Zielińska A., Grzybowski M.M., Olczak J., Fichna J. Chitinases and chitinase-like proteins as therapeutic targets in inflammatory diseases, with a special focus on inflammatory bowel diseases. Int. J. Mol. Sci. 2021;22(13):6966. DOI: 10.3390/ijms22136966

18. Zhao T., Su Z., Li Y., Zhang X., You Q. Chitinase-3 like-protein-1 function and its role in diseases. Signal Transduct. Target Ther. 2020;5(1):201. DOI: 10.1038/s41392-020-00303-7

19. Kjaergaard A.D., Nordestgaard B.G., Johansen J.S., Bojesen S.E. Observational and genetic plasma YKL-40 and cancer in 96,099 individuals from the general population. Int. J. Cancer. 2015;137:2696–704. DOI: 10.1002/ijc.29638

20. Zhao H., Huang M., Jiang L. Potential roles and future perspectives of chitinase 3-like 1 in macrophage polarization and the development of diseases. Int. J. Mol. Sci. 2023;24(22):16149. DOI: 10.3390/ijms242216149

21. Yeo I.J., Lee C.K., Han S.B., Yun J., Hong J.T. Roles of chitinase 3-like 1 in the development of cancer, neurodegenerative diseases, and inflammatory diseases. Pharmacol. Ther. 2019;203:107394. DOI: 10.1016/j.pharmthera.2019.107394

22. Liu W., Yang Y.J., An Q. LINC00963 Promotes ovarian cancer proliferation, migration and EMT via the miR-378g/CHI3L1 axis. Cancer Manag. Res. 2020;12:463–473. DOI: 10.2147/CMAR.S229083

23. Kim K.C., Yun J., Son D.J., Kim J.Y., Jung J.K., Choi J.S.et al. kim y.r., song j.k., kim s.y., kang s.k., shin d.h., roh y.s., han s.b., hong j.t. Suppression of metastasis through inhibition of chitinase 3-like 1 expression by miR-125a-3p-mediated up-regulation of USF1. Theranostics. 2018;8(16):4409–4428. DOI: 10.7150/thno.26467

24. Sarma N.J., Tiriveedhi V., Subramanian V., Shenoy S., Crippin J.S., Chapman W.C., Mohanakumar T. Hepatitis C virus mediated changes in miRNA-449a modulates inflammatory biomarker YKL40 through components of the NOTCH signaling pathway. PLoS One. 2012;7(11):e50826. DOI: 10.1371/journal.pone.0050826

25. He C.H., Lee C.G., Dela Cruz C.S., Lee C.M., Zhou Y., Ahangari F. et al. Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor α2. Cell Rep. 2013;4(4):830–41. DOI: 10.1016/j.celrep.2013.07.032

26. Low D., Subramaniam R., Lin L., Aomatsu T., Mizoguchi A., Ng A.et al. Chitinase 3-like 1 induces survival and proliferation of intestinal epithelial cells during chronic inflammation and colitis-associated cancer by regulating S100A9. Oncotarget. 2015;6(34):36535– 50. DOI: 10.18632/oncotarget.5440

27. Francescone R.A., Scully S., Faibish M., Taylor S.L., Oh D., Moral L. et al. Role of YKL-40 in the angiogenesis, radioresistance, and progression of glioblastoma. J. Biol. Chem. 2011;286(17):15332–43. DOI: 10.1074/jbc.M110.212514

28. George L., Mitra A., Thimraj T.A., Irmler M., Vishweswaraiah S., Lunding L.et al. Transcriptomic analysis comparing mouse strains with extreme total lung capacities identifies novel candidate genes for pulmonary function. Respir. Res. 2017;18(1):152. DOI: 10.1186/s12931-017-0629-3

29. Parkin G.M., Kim S., Mikhail A., Malhas R., McMillan L., Hollearn M. et al. Associations between saliva and plasma cytokines in cognitively normal, older adults. Aging Clin. Exp. Res. 2023;35:117– 26. DOI: 10.1007/s40520-022-02292-9

30. Llorens F., Thüne K., Tahir W., Kanata E., Diaz-Lucena D., Xanthopoulos K.et al. YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol. Neurodegener. 2017;12:83. DOI: 10.1186/s13024-017-0226-4

31. Schmalenberg M., Beaudoin C., Bulst L., Steubl D., Luppa P.B. Magnetic bead fluorescent immunoassay for the rapid detection of the novel inflammation marker YKL40 at the point-of-care. J. Immunol. Methods. 2015;427:36–41. DOI: 10.1016/j.jim.2015.09.004

32. Bojesen S.E., Johansen J.S., Nordestgaard B.G. Plasma YKL-40 levels in healthy subjects from the general population. Clin. Chim. Acta. 2011;412(9–10):709–12. DOI: 10.1016/j.cca.2011.01.022

33. Cao Y., Gao S., Luo G., Zhao S.Y., Tang Y.Q., Du Z.H., Pan S.L. Role and mechanisms of CHI3L1 in coronary artery lesions in a mouse model of Kawasaki disease-like vasculitis. Zhongguo Dang Dai Er Ke Za Zhi. 2023;25(12):1227–1233. DOI: 10.7499/j.issn.1008-8830.2309080

34. Chen L., Zheng J., Xue Q., Zhao Y. YKL-40 promotes the progress of atherosclerosis independent of lipid metabolism in apolipoprotein E-/- mice fed a high-fat diet. Heart Vessels. 2019;34(11):1874–1881. DOI: 10.1007/s00380-019-01434-w

35. Sun Y., Shan X., Guo J., Liu X., Ma D. CHI3L1 promotes myocardial fibrosis via regulating lncRNA TUG1/miR-495-3p/ETS1 axis. Apoptosis. 2023;28(9–10):1436–1451. DOI: 10.1007/s10495-023-01859-9

36. Sun X., Nakajima E., Norbrun C., Sorkhdini P., Yang A.X., Yang D. et al. Chitinase 3 like 1 contributes to the development of pulmonary vascular remodeling in pulmonary hypertension. JCI Insight. 2022;7(18):e159578. DOI: 10.1172/jci.insight.159578

37. Deng Y., Cai L., Wang F., Huang J., Wang H., Li L., Lv H. Upregulated microRNA-381-5p strengthens the effect of dexmedetomidine preconditioning to protect against myocardial ischemia-reperfusion injury in mouse models by inhibiting CHI3L1. Int. Immunopharmacol. 2021;92:107326. DOI: 10.1016/j.intimp.2020.107326

38. Xu T., Zheng X., Wang A., Guo Z., Zhang Y. Association of CHI3L1 gene variants with YKL-40 levels and hypertension incidence: A population-based nested case-control study in China. J. Cell. Mol. Med. 2021;25(2):919–924. DOI: 10.1111/jcmm.16148

39. Çetin M., Erdoğan T., Kırış T., Özer S., Çinier G., Emlek N., Durak H., Şatıroğlu Ö. Elevated serum YKL40 level is a predictor of MACE during the long-term follow up in hypertensive patients. Clin. Exp. Hypertens. 2020;42(3):271–274. DOI: 10.1080/10641963.2019.1632342

40. Ridker P.M., Chasman D.I., Rose L., Loscalzo J., Elias J.A. Plasma levels of the proinflammatory chitin-binding glycoprotein YKL-40, variation in the chitinase 3-like 1 gene (CHI3L1), and incident cardiovascular events. J. Am. Heart Assoc. 2014;3(3):e000897. DOI: 10.1161/JAHA.114.000897

41. Kwon Y., Kim J.H., Ha E.K., Jee H.M., Baek H.S., Han M.Y., Jeong S.J. Serum YKL-40 Levels Are Associated with the Atherogenic Index of Plasma in Children. Mediators Inflamm. 2020;2020:8713908. DOI: 10.1155/2020/8713908

42. Song M., Zhang G., Shi H., Zhu E., Deng L., Shen H. Serum YKL-40 in coronary heart disease: linkage with inflammatory cytokines, artery stenosis, and optimal cut-off value for estimating major adverse cardiovascular events. Front Cardiovasc. Med. 2023;10:1242339. DOI: 10.3389/fcvm.2023.1242339

43. Zheng J.L., Lu L., Hu J., Zhang R.Y., Zhang Q., Chen Q.J., Shen W.F. Genetic polymorphisms in chitinase 3-like 1 (CHI3L1) are associated with circulating YKL-40 levels, but not with angiographic coronary artery disease in a Chinese population. Cytokine. 2011;54:51–5. DOI: 10.1016/j.cyto.2010.12.018

44. Dieden A., Malan L., Mels C.M.C., Lammertyn L., Wentzel A., Nilsson P.M., Gudmundsson P., Jujic A., Magnusson M. Exploring biomarkers associated with deteriorating vascular health using a targeted proteomics chip: The SABPA study. Medicine (Baltimore). 2021;100:e25936. DOI: 10.1097/MD.0000000000025936

45. Wallentin L., Eriksson N., Olszowka M., Grammer T.B., Hagström E., Held C. et al. Plasma proteins associated with cardiovascular death in patients with chronic coronary heart disease: A retrospective study. PLoS Med. 2021;18(1):e1003513. DOI: 10.1371/journal.pmed.1003513

46. Fang C., Chen Z., Zhang J., Pan J., Jin X., Yang M., Huang L. The value of serum YKL-40 and TNF-α in the diagnosis of acute ST-segment elevation myocardial infarction. Cardiol. Re.s Pract. 2022;2022:4905954. DOI: 10.1155/2022/4905954

47. Tan Y., Ji X., Mo Z., Zhou Y. Serum YKL-40 positively correlates with MMP-9 and CRP in patients with acute ST segment elevation myocardial infarction following emergency treatment. Medicine (Baltimore). 2019;98(47):e17950. DOI: 10.1097/MD.0000000000017950

48. Yang L., Dong H., Lu H., Liao Y., Zhang H., Xu L. et al. Serum YKL-40 predicts long-term outcome in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Medicine (Baltimore). 2019;98(12):e14920. DOI: 10.1097/MD.0000000000014920

49. Bouwens E., van den Berg V.J., Akkerhuis K.M., Baart S.J., Caliskan K., Brugts J.J. et al. Circulating biomarkers of cell adhesion predict clinical outcome in patients with chronic heart failure. J. Clin. Med. 2020;9(1):195. DOI: 10.3390/jcm9010195

50. Bolla G.B., Fedele A., Faggiano A., Sala C., Santangelo G,. Carugo S. Effects of Sacubitril/Valsartan on biomarkers of fibrosis and inflammation in patients with heart failure with reduced ejection fraction. BMC Cardiovasc. Disord. 2022;22(1):217. DOI: 10.1186/s12872-022-02647-0

51. Arain F., Abraityte A., Bogdanova M., Solberg O.G., Michelsen A.E., Lekva T.et al. YKL-40 (Chitinase-3-Like Protein 1) Serum Levels in aortic stenosis. Circ. Heart Fail. 2020;13(10):e006643. DOI: 10.1161/CIRCHEARTFAILURE.119.006643

52. Tan H., Yao H., Lie Z., Chen G., Lin S., Zhang Y. MicroRNA-30a-5p promotes proliferation and inhibits apoptosis of human pulmonary artery endothelial cells under hypoxia by targeting YKL-40. Mol. Med. Rep. 2019;20(1):236–244. DOI: 10.3892/mmr.2019.10251

53. Kerget B., Özkan H.B., Afşin D.E., Koçak A.O., Laloglu E., Uçar E.Y., Sağlam L. Evaluation of serum YKL-40 level among clinical risk scores for early mortality in acute pulmonary thromboembolism. Clin. Biochem. 2022;108:20–26. DOI: 10.1016/j.clinbiochem.2022.07.003

54. Fiedorczuk P., Olszewska E., Rogalska J., Brzóska M.M. Osteoprotegerin, Chitinase 3-like Protein 1, and Cardiotrophin-1 as Potential Biomarkers of Obstructive Sleep Apnea in Adults — A Case-Control Study. Int. J. Mol. Sci. 2023;24(3):2607. DOI: 10.3390/ijms24032607

55. Cai J., Lyu X., Huang P., Li S., Chen R., Chen Z. et al. Increased levels of CHI3L1 and HA are associated with higher occurrence of liver damage in patients with obstructive sleep apnea. Front Med. (Lausanne). 2022;9:854570. DOI: 10.3389/fmed.2022.854570


Рецензия

Для цитирования:


Алиева А.М., Валиев Р.К., Байкова И.Е., Теплова Н.В., Шнахова Л.М., Сарыев М.Н., Котикова И.А., Никитин И.Г. Хитиназа-3-подобный белок 1 (CHI3L1, YKL-40) при сердечно-сосудистой патологии. Клиническая медицина. 2024;102(9-10):698-706. https://doi.org/10.30629/0023-2149-2024-102-9-10-698-706

For citation:


Alieva A.M., Valiev R.K., Baykova I.E., Teplova N.V., Shnakhova L.M., Saryev M.N., Kotikova I.A., Nikitin I.G. Chitinase-3-like protein 1 (CHI3L1, YKL-40) in cardiovascular pathology. Clinical Medicine (Russian Journal). 2024;102(9-10):698-706. (In Russ.) https://doi.org/10.30629/0023-2149-2024-102-9-10-698-706

Просмотров: 279


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)