Pathogenetic basis of venous thromboembolic complications as deuteropathies of COVID-19
https://doi.org/10.30629/0023-2149-2020-98-7-485-490
Abstract
Аt present, it can be noted without exaggeration that COVID-19 is the most serious challenge to the international system of practical health care in its recent history. Extremely high rates of morbidity and mortality dictate the need for a more detailed study of the pathogenetic aspects of the developing infectious disaster. In addition to respiratory distress syndrome, and systemic inflammatory response syndrome, COVID-19 is characterized by polyvalent disorders of the mechanisms of systemic hemostasis, which is reflected in the increase in the number of venous thromboembolic complications in the overall structure of morbidity and mortality. This literature review summarizes information on Covid-associated coagulopathy and its impact on changes in the clinical and epidemiological characteristics of venous thromboembolic complications.
About the Authors
S. A. FedorovRussian Federation
Sergey A. Fedorov — candidate of medical Sciences, cardiovascular surgeon
603950, Nizhny Novgorod,
603005, Nizhny Novgorod
A. P. Medvedev
Russian Federation
603950, Nizhny Novgorod,
603005, Nizhny Novgorod
N. Yu. Borovkova
Russian Federation
603005, Nizhny Novgorod
E. V. Taranov
Russian Federation
603950, Nizhny Novgorod
References
1. CDC. 2019 Novel Coronavirus, Wuhan, China. CDC. [Electronic resource]. URL: https://www.cdc.gov/coronavirus/2019-ncov/about/index.html. January 26 2020; Accessed: January 27, 2020.
2. Gallegos A. WHO Declares Public Health Emergency for Novel Coronavirus. Medscape Medical News. [Electronic resource]. URL: https://www.medscape.com/viewarticle/924596. January 30 2020; Accessed: January 31 2020.
3. The New York Times. Coronavirus Live Updates: WHO Declares Pandemic as Number of Infected Countries Grows. The New York Times. [Electronic resource]. URL: https://www.nytimes.com/2020/03/11/world/coronavirus-news.html#link-682e5b06. March 11 2020; Accessed: March 11 2020. https://coronavirus-monitor.ru/?fb.
4. Goyal P., Choi J.J., Pinheiro L.C., Schenck E.J., Chen R., Jabri A. et al. Clinical characteristics of Covid-19 in New York City. N. Engl J. Med. 2020;382:2372–4. DOI: 10.1056/NEJMc2010419.
5. Nicholls J.M., Butany J., Poon L.L., Chan K.H., Beh S.L., Poutanen S. et al. Time course and cellular localization of SARS-CoV nucleoprotein and RNA in lungs from fatal cases of SARS. PLoS Med. 2006;3:e27. DOI: 10.1371/journal.pmed.0030027.
6. Oudit G.Y., Kassiri Z., Jiang C., Liu P.P., Poutanen S.M., Penninger J.M., Butany J. SARS coronavirus modulation of myocardial ACE-2 expression and inflammation in patients with SARS. Eur. J. Clin. Investig. 2009;39:618–625.
7. Kloka F.A., Kruip M.J.H.A., van der Meerc N.J.M. et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020;191:145–147. DOI: 10.1016/j.thromres.2020.04.013
8. Cui S., Chen S., Li X., Liu S., Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18(6):1421–1424. DOI: 10.1111/jth.14830.
9. Poissy J., Goutay J., Caplan M. et al. Pulmonary Embolism in COVID19 Patients: Awareness of an Increased Prevalence. Circulation. 2020;14;142(2):184–186. DOI: 10.1161/CIRCULATIONAHA.120.047430.
10. Cui S., Chen S., Li X., Liu S., Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18(6):1421–1424. DOI: 10.1111/JTH.14830.
11. Dolhnikoff M., Duarte-Neto A.N., Monteiro R.A.A. et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID19. J. Thromb. Haemost. 2020;18(6):1517–1519. DOI: 10.1111/JTH.14844.
12. Bikdeli B., Madhavan M.V., Jimenez D. et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up. JACC. 2020;75(23):2950– 2973. DOI: 10.1016/j.jacc.2020.04.031.
13. Menachery V.D., Yount B.L., Debbink K., Agnihothram S., Gralinski L.E., Plante J.A. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 2015;21(12):1508–1513. DOI: 10.1038/nm.3985.
14. Xu Z., Shi L., Wang Y. Pathologic findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respiratory Med. 2020;8:420–422.
15. Zhang H., Zhou P., Wei Y. Histopathologic changes and SARSCov-2 immunostaining in the lung of a patient with COVID-19. Ann. Intern. Med. 2020;172(9):629–632. DOI: 10.7326/M20-0533.
16. Hamming I., Timens W., Bulthuis M., Lely A., Navis G., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004;203:631–637.
17. Gupta N., Zhao Y.Y., Evans C.E. The stimulation of thrombosis by hypoxia. Thromb. Res. 2019;181:77–83. [PMID: 31376606] DOI:10.1016/j.thromres.2019.07.013.
18. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18(04):844–847.
19. Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513.
20. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
21. Witkowski M., Landmesser U., Rauch U. Tissue factor as a link between inflammation and coagulation. Trends Cardiovasc. Med. 2016;26:297–303.
22. Cao X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol. 2020;20(5):269–270. DOI: 10.1038/s41577-020-0308-3.
23. Iba T., Levy J.H., Levi M., Thachil J. Coagulopathy in COVID-19. J. Thromb. Haemost. 2020;10.1111/jth.14975. Online ahead of print. DOI: 10.1111/jth.14975.
24. Goshua G. et al. Endotheliopathy is Essential in COVID-19 Associated Coagulopathy. EHA Congress. Abstract LB2605.
25. Lippi G., Plebani M., Henry B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin. Chim. Acta. 2020;506:145–148. DOI: 10.1016/j.cca.2020.03.022.
26. Guan W., Ni Z., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2019;2020:1–13.
27. Fogarty H., Townsend L., Cheallaigh C.N., Bergin C., Martin-Loeches I., Browne P. et al. COVID-19 coagulopathy in caucasian patients. Br. J. Haematol. 2020;189(6):1044–1049. DOI: 10.1111/bjh.16749.
28. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID‐19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062.
29. Gao Y., Li T., Han M. et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J. Med. Virol. 2020;92(7):791–796. [E-pub ahead of print]. DOI: 10.1002/jmv.25770.
30. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18:844–847.
31. Klok F.A. et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thrombosis research. 2020;191:148–150. DOI: 10.1016/j.thromres.2020.04.041.
32. Schünemann H.J., Cushman M., Burnett A.E. et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Blood. Adv. 2018;2(22):3198–3225.
33. Driggin E., Madhavan M.V., Bikdeli B., Chuich T., Laracy J., Bondi-Zoccai G. et al. Cardiovascular considerations for patients, health care workers, and health systems during the coronavirus disease 2019 (COVID-19) pandemic. J. Am. Coll. Cardiol. 2020;75(18):2352– 2371. DOI: 10.1016/j.jacc.2020.03.031.
34. Januzzi J.L. Jr. Troponin and BNP use in COVID-19. Cardiology Magazine. [Electronic resource]. URL: https://www.acc.org/latest-incardiology/articles/2020/03/18/15/25/troponin-and-bnp-use-incovid19. Accessed: April 7 2020.
35. Shi S., Qin M., Shen B., Cai Y., Liu T., Yang F., Gong W., Liu X., Liang J., Zhao O., Huang H., Yang B., Huang C. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802–810. DOI: 10.1001/jamacardio.2020.0950.
36. Sodhi C.P., Wohlford-Lenane C., Yamaguchi Y., Prindle T., Fulton W.B., Wang S. et al. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am. J. Physiol. Lung Cell Mol. Physiol. 2018;314(1):17–31. DOI: 10.1152/ajplung.00498.2016.
37. Chi G., Lee J.J., Jamil A., Gunnam V., Najafi H., Memar Montazerin S., Shojaei F., Marszalek J. Venous Thromboembolism among Hospitalized Patients with COVID-19 Undergoing Thromboprophylaxis: A Systematic Review and Meta-Analysis. J. Clin Med. 2020;3;9(8):E2489. DOI: 10.3390/jcm9082489.
38. Gibson C.M., Spyropoulos A.C., Cohen A.T. et al. The IMPROVEDD VTE Risk Score: Incorporation of D-Dimer into the IMPROVE Score to Improve Venous Thromboembolism Risk Stratification. TH Open. 2017;1(1):e56–e65. DOI:10.1055/s-0037-1603929.
39. Cohen A.T., Harrington R.A., Goldhaber S.Z. et al. For the APEX Investigators. Extended Thromboprophylaxis with Betrixaban in Acutely Ill Medical Patients. N. Engl. J Med. 2016;375:534–44. DOI:10.1056/NEJMoa1601747.
Review
For citations:
Fedorov S.A., Medvedev A.P., Borovkova N.Yu., Taranov E.V. Pathogenetic basis of venous thromboembolic complications as deuteropathies of COVID-19. Clinical Medicine (Russian Journal). 2020;96(7):485-490. (In Russ.) https://doi.org/10.30629/0023-2149-2020-98-7-485-490