

Potential of mRNA therapy in the treatment of cardiovascular diseases
https://doi.org/10.30629/0023-2149-2024-102-8-585-592
Abstract
The outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), alarmed the global community due to the significant loss of human lives during the pandemic. However, as the saying goes, every cloud has a silver lining. A positive aspect of this recent pandemic has been that it stimulated scientists to create vaccines against SARS-CoV-2, accelerating the emergence of new therapeutic agents based on messenger ribonucleic acid (mRNA). Numerous mRNA therapeutic products are currently in development, with dozens at various clinical trial stages. These products have facilitated significant changes in the paradigm of medical therapy, including the treatment of cardiovascular diseases (CVD). Although most of these cardiovascular mRNA therapeutics are still in preclinical development, phase IIa trials for myocardial ischemia therapy have already been completed with encouraging results. The scope of mRNA therapy for CVD is extremely broad, potentially even limitless, with ongoing research including conditions like myocardial ischemia, heart failure, arrhythmias, hypercholesterolemia, and occlusive arterial diseases. Moreover, mRNA can be used to enhance the effectiveness of cell therapies. In the future, researchers predict that mRNA therapies will not only replace some existing biopharmaceuticals and pharmacotherapy methods but also be applied to treat previously considered untreatable cardiovascular diseases.
About the Authors
K. A. AitbaevKyrgyzstan
Kubanych A. Aitbaev — Doctor of Medical Sciences, Professor, Head of the Laboratory of Pathological Physiology and Immunology; Member of the Board of the Society of Specialists in Chronic Kidney Disease of
Kyrgyzstan
Bishkek
I. T. Murkamilov
Kyrgyzstan
Ilkhom T. Murkamilov — Doctor of Medical Sciences, Associate Professor of the Department of Faculty Therapy; Professor of the Department of Therapy No. 2 of the Medical Faculty; Chairman of the Board of the Society of Specialists in Chronic Kidney Disease of
Kyrgyzstan
Bishkek
V. V. Fomin
Russian Federation
Viktor V. Fomin — Doctor of Medical Sciences, Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Department of Faculty Therapy No. 1 of the N.V. Sklifosovsky Institute of Clinical Medicine, Vice-Rector for Innovation and Clinical Activities
Moscow
References
1. Sasso J.M., Ambrose B.J.B., Tenchov R. et al. The progress and promise of RNA medicine — an arsenal of targeted treatments. J. Med. Chem. 2022;65(10):6975–7015. DOI: 10.1021/acs.jmedchem.2c00024. Epub 2022 May 9. PMID: 35533054; PMCID: PMC9115888.
2. Zogg H., Singh R., Ro S. Current advances in RNA therapeutics for human diseases. Int. J. Mol. Sci. 2022;23(5):2736. DOI: 10.3390/ijms23052736. PMID: 35269876; PMCID: PMC8911101.
3. Collén A., Bergenhem N., Carlsson L. et al. VEGFA mRNA for regenerative treatment of heart failure. Nat. Rev. Drug. Discov. 2022;21(1):79–80. DOI: 10.1038/s41573-021-00355-6
4. Center for RNA Therapeutics. 2022. [cited 2022 Oct 21]. [Electronic resource]. URL: www.houstonmethodist.org/rna-therapeutics
5. FDA Takes Key Action in fi ght against COVID-19 by issuing emergency use authorization for fi rst COVID-19 vaccine. 2020. [cited 2022 Oct 24]. [Electronic resource]. URL: https://www.fda.gov/news-events/press-announcements/fda-takes-key-action-fight-against-covid-19-issuing-emergency-use-authorization-first-covid-19
6. CEPI 2.0 and the 100 days mission. 2022. [cited 2022 Oct 24]. [Electronic resource]. URL: https://100days.cepi.net/
7. Terada Y., Kawachi K., Matsuura Y., Kamitani W. MERS coronavirus nsp1 participates in an effi cient propagation through a specifi c interaction with viral RNA. Virology. 2017;511:95–105. DOI: 10.1016/j.virol.2017.08.026
8. Shehata M.M., Kandeil A., Mostafa A. et al. A recombinant infl uenza A/H1N1 carrying a short immunogenic peptide of MERS-CoV as bivalent vaccine in BALB/c mice. Pathogens. 2019;8(4):281. DOI: 10.3390/pathogens8040281
9. Karikó K., Buckstein M., Ni H., Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modifi cation and the evolutionary origin of RNA. Immunity. 2005;23(2):165–75. DOI: 10.1016/j.immuni.2005.06.008
10. Geall A.J., Verma A., Otten G.R. et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl. Acad. Sci. USA. 2012;109(36):14604–9. DOI: 10.1073/pnas
11. Stewart D.J., Kutryk M.J.B., Fitchett D. et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol. Ther. 2009;17(6):1109–15. DOI: 10.1038/mt.2009.70
12. Stewart D.J., Hilton J.D., Arnold J.M.O. et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther. 2006;13(21):1503–11. DOI: 10.1038/sj.gt.3302802
13. Zangi L., Lui K.O., von Gise A. et al. Modifi ed mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 2013;31(10):898–907. DOI: 10.1038/nbt.2682
14. Gan L.M., Lagerström-Fermér M., Carlsson L.G. et al. Intradermal delivery of modifi ed mRNA encoding VEGF-A in patients with type 2 diabetes. Nat. Commun. 2019;10(1):871. DOI: 10.1038/s41467-019-08852-4
15. Anttila V., Saraste A., Knuuti J. et al. Synthetic mRNA Encoding VEGF-A in Patients Undergoing Coronary Artery Bypass Grafting: Design of a Phase 2a Clinical Trial. Mol. Ther. Methods Clin. Dev. 2020;18:464–472. DOI: 10.1016/j.omtm.2020.05.030
16. Liu S., Tang L., Zhao X. et al. Yap Promotes Noncanonical Wnt Signals From Cardiomyocytes for Heart Regeneration. Circ. Res. 2021;129(8):782–797. DOI: 10.1161/CIRCRESAHA.121.318966
17. Kapoor N., Liang W., Marbán E., Cho H.C. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat. Biotechnol. 2013;31(1):54–62. DOI: 10.1038/nbt.2465
18. Choudhury M., Black N., Alghamdi A. et al. TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome. J. Physiol. 2018;596(24):6141–6155. DOI: 10.1113/JP276508. Epub 2018 Oct 13. PMID: 30259525; PMCID: PMC6292813
19. Bai Y., Kan S., Zhou S. et al. Enhancement of the in vivo persistence and antitumor effi cacy of CD19 chimeric antigen receptor T cells through the delivery of modifi ed TERT mRNA. Cell. Discov. 2015;1:15040. DOI: 10.1038/celldisc.2015.40
20. Li Y., Zhou G., Bruno I.G. et al. Transient introduction of human telomerase mRNA improves hallmarks of progeria cells. Aging Cell. 2019;18(4):e12979. DOI: 10.1111/acel.12979
21. Mojiri A., Walther B.K., Jiang C. et al. Telomerase therapy reverses vascular senescence and extends lifespan in progeria mice. Eur. Heart J. 2021;42(42):4352-4369. DOI: 10.1093/eurheartj/ehab547
22. Chang D.F., Court K.A., Holgate R. et al. Telomerase mRNA enhances human skin engraftment for wound healing. Adv. Healthc. Mater. 2023;24:e2302029. DOI: 10.1002/adhm.202302029. Epub ahead of print. PMID: 37619534.
23. Dzul-Huchim V.M., Ramirez-Sierra M.J., Martinez-Vega P.P. et al. Vaccine-linked chemotherapy with a low dose of benznidazole plus a bivalent recombinant protein vaccine prevents the development of cardiac fi brosis caused by Trypanosoma cruzi in chronically-infected BALB/c mice. PLoS Negl. Trop. Dis. 2022;16(9):e0010258. DOI: 10.1371/journal.pntd.0010258
24. Kim S.C., Stice J.P., Chen L. et al. Extracellular heat shock protein 60, cardiac myocytes, and apoptosis. Circ. Res. 2009;105(12):1186– 95. DOI: 10.1161/CIRCRESAHA.109.209643
25. Youker K.A., Shen H., Bhimaraj A., Torre-Amione G. Abstract 11435: A new paradigm in therapy: a vaccine against the progression of heart failure. Circulation. 2021;144(1):A11435. DOI: 10.1161/circ.144.suppl_1.11435
26. Vogel A.B., Lambert L., Kinnear E. et al. Self-amplifying RNA vaccines give equivalent protection against infl uenza to mRNA vaccines but at much lower doses. Mol. Ther. 2018;26(2):446–455. DOI: 10.1016/j.ymthe.2017.11.017
27. Beissert T., Perkovic M., Vogel A. et al. A Trans-amplifying RNA vaccine strategy for induction of potent protective immunity. Mol. Ther. 2020;28(1):119-128. DOI: 10.1016/j.ymthe.2019.09.009
28. Lu D., Chatterjee S., Xiao K. et al. A circular RNA derived from the insulin receptor locus protects against doxorubicin-induced cardiotoxicity. Eur. Heart J. 2022;43(42):4496–4511. DOI: 10.1093/eurheartj/ehac337
29. Boada C., Zinger A., Tsao C. et al. Rapamycin-loaded biomimetic nanoparticles reverse vascular infl ammation. Circ. Res. 2020;126(1):25–37. DOI: 10.1161/CIRCRESAHA.119
30. Rurik J.G., Epstein J.A. Uniting disciplines to develop therapeutics: targeted mRNA lipid nanoparticles reprogram the immune system in vivo to treat heart disease. DNA Cell. Biol. 2022;41(6):539–543. DOI: 10.1089/dna.2022.0171
31. Rurik J.G., Tombácz I., Yadegari A. et al. CAR T cells produced in vivo to treat cardiac injury. Science. 2022;375(6576):91–96. DOI: 10.1126/science.abm0594. PMID: 34990237; PMCID: PMC9983611.32.
Review
For citations:
Aitbaev K.A., Murkamilov I.T., Fomin V.V. Potential of mRNA therapy in the treatment of cardiovascular diseases. Clinical Medicine (Russian Journal). 2024;102(8):585-592. (In Russ.) https://doi.org/10.30629/0023-2149-2024-102-8-585-592