Preview

Clinical Medicine (Russian Journal)

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Features of the development of cardiovascular pathology in menopausal women

https://doi.org/10.30629/0023-2149-2024-102-7-493-498

Abstract

The significant social impact of increased morbidity and mortality in women due to hormonal dysfunction has led to the development of recommendations for the prevention and treatment of cardiovascular diseases (CVD) in this patient group (Evidence-based guidelines for cardiovascular disease prevention in women). Based on current literature, the mechanisms of development and clinical course of cardio-metabolic disorders occurring during the climacteric period have been summarized. Recent data indicate that the onset of menopause in women is accompanied by a complex of hormonal, metabolic, and structural-functional changes that contribute to the formation and rapid progression of cardiovascular pathology. The relationship between structural changes in the myocardium and its functional characteristics remains a topic of discussion, as does the influence of genetic factors, the imbalance of the renin-angiotensin-aldosterone system, and the immune system depending on the type of menopause, the presence and severity of postmenopausal hypertension, its duration, and several other factors. The deterioration in quality of life among patients with climacteric disorders leads to a range of not only medical but also socioeconomic problems. An important task is to create a specialized multidisciplinary approach to climacteric issues, which will enable individualized comprehensive treatment tailored to the pathogenic mechanisms of dishormonal cardiomyopathy.

About the Authors

E. V. Zaitseva
Novosibirsk State Medical University of the Ministry of Health of Russia
Russian Federation

Ekaterina V. Zaitseva — 6th-year student of the Medical Faculty 

Novosibirsk



V. V. Popov
Novosibirsk State Medical University of the Ministry of Health of Russia
Russian Federation

Vladislav V. Popov — 6th-year student of the Medical Faculty

Novosibirsk



L. D. Khidirova
Novosibirsk State Medical University of the Ministry of Health of Russia; Novosibirsk Clinical Cardiology Dispensary
Russian Federation

Lyudmila D. Khidirova — Doctor of Medical Sciences, Professor of the Department of Pharmacology, Clinical Pharmacology and EvidenceBased Medicine 

Novosibirsk



References

1. Vogel B., Acevedo M., Appelman Y. et al. The Lancet women and cardiovascular disease commission: reducing the global burden by 2030. Lancet. 2021;397(10292):23852438. DOI: 10.1016/S0140-6736(21)00684-X

2. Newson L. Menopause and cardiovascular disease. Post. Reprod. Health. 2018;24(1):4449. DOI: 10.1177/2053369117749675

3. Samargandy S., Matthews K.A., Brooks M.M. et al. Trajectories of blood pressure in midlife women: does menopause matter? Circ. Res. 2022; 130:312–322. DOI: 10.1161/CIRCRESAHA.121.3194242

4. Higashikuni Y., Tanaka K., Kato M., Nureki O., Hirata Y., Nagai R. et al. Toll-like receptor-2 mediates adaptive cardiac hypertrophy in response to pressure overload through interleukin-1beta upregulation via nuclear factor kappaB activation. J. Am. Heart Assoc. 2013;2(6):e000267. DOI: 10.1161/JAHA.113.000267.

5. Xiao F.Y., Nheu L., Komesaroff P., Ling S. Te stosterone protects cardiac myocytes from superoxide injury via NF-κB signalling pathways. Life Sci. 2015;133:45–52. DOI: 10.1016/j.lfs.2015.05.009

6. Zhang L., Wu S., Ruan Y., Hong L., Xing X., Lai W. Testosterone suppresses oxidative stress via androgen receptor- independent pathway in murine cardiomyocytes. Mol. Med. Rep. 2011;4(6):1183–1188. DOI: 10.3892/mmr.2011.539

7. Vicencio J.M., Ibarra C., Estrada M., Сhoing M., Soto D., Parra V. et al. Testosterone induces an intracellular calcium increase by a nongenomic mechanism in cultured rat cardiac myocytes. Endocrinology. 2006;147(3):1386–1395. DOI: 10.1210/en.2005-1139

8. Cruz-Topete D., Dominic P., Stokes K.Y. Uncovering sex-specifi c mechanisms of action of testosterone and redox balance. Redox Biol. 2020;31:101490. DOI: 10.1016/j.redox.2020.101490

9. Stone T., Stachenfeld N.S. Pathophysiological eff ects of androgens on the female vascular system. Biol. Sex. Diff er. 2020;11:45. DOI: 10.1186/s13293-020-00323-6

10. Zhao D., Guallar E., Ouyang P., Subramanya V., Vaidya D., Ndumele C.E. et al. Endogenous sex hormones and incident cardiovascular disease in post-menopausal women. J. Am. Coll. Cardiol. 2018;71(22):2555–2566. DOI: 10.1016/j.jacc.2018.01.083

11. Zhao D., Guallar E., Ballantyne C.M., Post W.S., Ouyang P., Vaidya D. et al. Sex hormones and incident heart failure in men and postmenopausal women: the atherosclerosis risk in communities study. J. Clin. Endoc. Metab. 2020;105(10):e3798–e3807. DOI: 10.1210/clinem/dgaa500

12. Jia X., Sun C., Tang O., Gorlov O., Nambi V., Virani S.S. et al. Plasma dehydroepiandrosterone sulfate and cardiovascular disease risk in older men and women. J. Clin. Endoc. Metab. 2020;105(12):e4304– e4327. DOI: 10.1210/clinem/dgaa518

13. Schaff rath G., Kische H., Gross S., Wallaschofski H. et al. Association of sex hormones with incident 10-year cardiovascular disease and mortality in women. Maturitas. 2015;82(4):424–430. DOI: 10.1016/j.maturitas.2015.08.009

14. Holmegard H.N., Nordestgaard B.G., Jensen G.B. et al. Sex hormones and ischemic stroke: a prospective cohort study and meta-analyses. J. Clin. Endoc. Metab. 2016;101(1):69–78. DOI: 10.1210/jc.20152687

15. Xu S., Dai W., Li J., Li Y. Synergistic eff ect of estradiol and testosterone protects against IL-6- inducedcardiomyocyte apoptosismediated by TGF-β1. Int. J. Clin. Exp. Pathol. 2018;11(1):10–26

16. Pruett S.T., Bushnev A., Hagedorn K., Adiga M., Haynes C.A., Sullards M.C. et al. Biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols. J. Lipid Res. 2008;49(8):1621–1639. DOI: 10.1194/jlr.R800012-JLR200

17. Sasset L., Zhang Y., Dunn T.M., Lorenzo A.D. Sphingolipid de novo biosynthesis: a rheostat of cardiovascular homeostasis. Trends Endocrinol. Metab. 2016;27(11):807–819. DOI: 10.1016/j.tem.2016.07.005

18. Harrison P.J., Dunn T.M., Campopiano D.J. Sphingolipid biosynthesis in man and microbes. Nat. Prod. Rep. 2018;35(9):921–954.DOI: 10.1039/c8np00019k

19. Shu H., Peng Y., Hang W., Li N., Zhou N., Wang D.W. Emerging roles of ceramide in cardiovascular diseases. Aging Dis. 2022;13(1):232– 245. DOI: 10.14336/AD.2021.0710

20. de Mello V.D., Lankinen M., Schwab U., Kolhmainen M., Lehto S. et al. Link between plasma ceramides, infl ammation and insulin resistance: Association with serum IL-6 concentration in patients with coronary heart disease. Diabetologia. 2009;52(12):2612–2615. DOI: 10.1007/s00125-009-1482-9

21. Spijkers L.J., van den Akker R.F., Janssen B., Debets J.J. et al. Hypertension is associated with marked alterations in sphingolipid biology: A potential role for ceramide. PLoS ONE. 2011;6(7):e21817. DOI: 10.1371/journal.pone.0021817

22. Pan W., Yu J., Shi R., Yan L., Yang T., Li Y. et al. Elevation of ceramide and activation of secretory acid sphingomyelinase in patients with acute coronary syndromes. Coron. Artery Dis. 2014;25(3):230–235. DOI: 10.1097/MCA.0000000000000079

23. Havulinna A.S., Sysi-Aho M., Hilvo M., Kauhanen D.,Hurme R., Ekroos K. et al. Circulating ceramides predict cardiovascular outcomes in the Population-Based FINRISK 2002 Cohort. Arterioscler. Thromb. Vasc. Biol. 2016;36(12):2424–2430. DOI: 10.1161/ATVBAHA.116.307497

24. Egom E.E., Mohamed T.M., Mamas M.A., Shi Y., Liu W., Chirico D. et al. Activation of Pak1/Akt/eNOS signaling following sphingosine-1-phosphate release as part of a mechanism protecting cardiomyocytes against ischemic cell injury. Am. J. Physiol. Heart Circ. Physiol. 2011;301(4):H1487–H1495. DOI: 10.1152/ajpheart.01003.2010

25. Guo S., Yu Y., Zhang N., Cui Y., Zhai L., Li H. et al. Higher level of plasma bioactive molecule sphingosine 1-phosphate in women is associated with estrogen. Biochim. Biophys. Acta. 2014;1841(6):836–846. DOI: 10.1016/j.bbalip.2014.02.005

26. Fichtlscherer S., Zeiher A.M., Dimmeler S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases. Arterioscler. Thromb. Vasc. Biol. 2011;31(11):23832390. DOI: 10.1161/ATVBAHA.111.226696

27. Perez-Cremades D., Mompeon A., Vidal-Gomez X., Hermenegildo C., Novella S. Role of miRNA in the regulatory mechanisms of estrogens in cardiovascular ageing. Oxid Med Cell Longev. 2018;2018:6082387. DOI: 10.1155/2018/6082387

28. Vidal-Gomez X., Perez-Cremades D., Mompeon A., Dantas A.P., Novella S., Hermenegildo C. MicroRNA as crucial regulators of gene expression in estradiol-treated human endothelial сells. Cell Physiol. Biochem. 2018;45(5):18781892. DOI: 10.1159/000487910

29. Gupta A., Caff rey E., Callagy G., Gupta S. Oestrogen-dependent regulation of miRNA biogenesis: many ways to skin the cat. Biochem. Soc. Trans. 2012;40(4):752758. DOI: 10.1042/BST20110763

30. Zhao J., Imbrie G.A., Baur W.E., Lyer L.K., Aronovitz M.J., Kershaw T.B. et al. Estrogen receptor-mediated regulation of microRNA inhibits proliferation of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2013;33(2):257265. DOI: 10.1161/ATVBAHA.112.300200

31. Mori T., Durand J., Chen Y., Thompson J.A., Bakir S., Oparil S. Eff ects of short-term estrogen treatment on the neointimal response to balloon injury of rat carotid artery. Am. J. Cardiol. 2000;85(10):12761279. DOI: 10.1016/s0002-9149(00)00748-7

32. Xing D., Nozell S., Chen Y.F., Hage F., Oparil S. Estrogen and mechanisms of vascular protection. Arterioscler. Thromb. Vasc. Biol. 2009;29(3):289295. DOI: 10.1161/ATVBAHA.108.182279

33. Wang L., Tang Z.P., Zhao W., Cong B.H., Lu J.Q., Tang X.L., et al. MiR-22/Sp-1 links estrogens with the up-regulation of cystathionine gamma-lyase in myocardium, which contributes to estrogenic cardioprotection against oxidative stress. Endocrinology. 2015;156(6):21242137. DOI: 10.1210/en.2014-1362

34. Queiros A.M., Eschen C., Fliegner D., Kararigas G., Dworatzek E., Westphal C. et al. Sex- and estrogen-dependent regulation of a miRNA network in the healthy and hypertrophied heart. Int. J. Cardiol. 2013;169(5):331338. DOI: 10.1016/j.ijcard.2013.09.002

35. Eberle D., Hegarty B., Bossard P., et al. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 2004;86(11):839– 48. DOI: 10.1016/j.biochi.2004.09.018

36. Mullen E., Brown R.M., Osborne T.F. et al. Soy isofl avones aff ect sterol regulatory element binding proteins (SREBPs) and SREBP-regulated genes in HepG2 cells. J. Nutr. 2004;134(11):2942–7.DOI: 10.1093/jn/134.11.2942

37. Xue B., Johnson A.K., Hay M. Sex diff erences in angiotensin IIe and aldosterone-induced hypertension: the central protective effects of estrogen. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013;305(5):R459R463. DOI: 10.1152/ajpregu.00222.2013

38. Moreau M.E., Garbacki N., Molinaro G., Brown N.J., Marceau., Adam A. The kallikrein-kinin system: current and future pharmacological targets. J. Pharmacol Sci. 2005;99(1):638. DOI: 10.1254/jphs.srj05001x

39. Hamming I., Cooper M.E., Haagmans B.L., Hooper N.M., Korstanje A.D., Timens W. et al. The emerging role of ACE2 in physiology and disease. J. Pathol. 2007;212(1):111. DOI: 10.1002/path.2162

40. Xue Q., Xiao D., Zhang L. Estrogen regulates angiotensin II receptor expression patterns and protects the heart from ischemic injury in female rats. Biol. Reprod. 2015;93(1):6. DOI: 10.1095/biolreprod.115.129619


Review

For citations:


Zaitseva E.V., Popov V.V., Khidirova L.D. Features of the development of cardiovascular pathology in menopausal women. Clinical Medicine (Russian Journal). 2024;102(7):493–498. (In Russ.) https://doi.org/10.30629/0023-2149-2024-102-7-493-498

Views: 212


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)