

Features of the development of cardiovascular pathology in menopausal women
https://doi.org/10.30629/0023-2149-2024-102-7-493-498
Abstract
The significant social impact of increased morbidity and mortality in women due to hormonal dysfunction has led to the development of recommendations for the prevention and treatment of cardiovascular diseases (CVD) in this patient group (Evidence-based guidelines for cardiovascular disease prevention in women). Based on current literature, the mechanisms of development and clinical course of cardio-metabolic disorders occurring during the climacteric period have been summarized. Recent data indicate that the onset of menopause in women is accompanied by a complex of hormonal, metabolic, and structural-functional changes that contribute to the formation and rapid progression of cardiovascular pathology. The relationship between structural changes in the myocardium and its functional characteristics remains a topic of discussion, as does the influence of genetic factors, the imbalance of the renin-angiotensin-aldosterone system, and the immune system depending on the type of menopause, the presence and severity of postmenopausal hypertension, its duration, and several other factors. The deterioration in quality of life among patients with climacteric disorders leads to a range of not only medical but also socioeconomic problems. An important task is to create a specialized multidisciplinary approach to climacteric issues, which will enable individualized comprehensive treatment tailored to the pathogenic mechanisms of dishormonal cardiomyopathy.
About the Authors
E. V. ZaitsevaRussian Federation
Ekaterina V. Zaitseva — 6th-year student of the Medical Faculty
Novosibirsk
V. V. Popov
Russian Federation
Vladislav V. Popov — 6th-year student of the Medical Faculty
Novosibirsk
L. D. Khidirova
Russian Federation
Lyudmila D. Khidirova — Doctor of Medical Sciences, Professor of the Department of Pharmacology, Clinical Pharmacology and EvidenceBased Medicine
Novosibirsk
References
1. Vogel B., Acevedo M., Appelman Y. et al. The Lancet women and cardiovascular disease commission: reducing the global burden by 2030. Lancet. 2021;397(10292):23852438. DOI: 10.1016/S0140-6736(21)00684-X
2. Newson L. Menopause and cardiovascular disease. Post. Reprod. Health. 2018;24(1):4449. DOI: 10.1177/2053369117749675
3. Samargandy S., Matthews K.A., Brooks M.M. et al. Trajectories of blood pressure in midlife women: does menopause matter? Circ. Res. 2022; 130:312–322. DOI: 10.1161/CIRCRESAHA.121.3194242
4. Higashikuni Y., Tanaka K., Kato M., Nureki O., Hirata Y., Nagai R. et al. Toll-like receptor-2 mediates adaptive cardiac hypertrophy in response to pressure overload through interleukin-1beta upregulation via nuclear factor kappaB activation. J. Am. Heart Assoc. 2013;2(6):e000267. DOI: 10.1161/JAHA.113.000267.
5. Xiao F.Y., Nheu L., Komesaroff P., Ling S. Te stosterone protects cardiac myocytes from superoxide injury via NF-κB signalling pathways. Life Sci. 2015;133:45–52. DOI: 10.1016/j.lfs.2015.05.009
6. Zhang L., Wu S., Ruan Y., Hong L., Xing X., Lai W. Testosterone suppresses oxidative stress via androgen receptor- independent pathway in murine cardiomyocytes. Mol. Med. Rep. 2011;4(6):1183–1188. DOI: 10.3892/mmr.2011.539
7. Vicencio J.M., Ibarra C., Estrada M., Сhoing M., Soto D., Parra V. et al. Testosterone induces an intracellular calcium increase by a nongenomic mechanism in cultured rat cardiac myocytes. Endocrinology. 2006;147(3):1386–1395. DOI: 10.1210/en.2005-1139
8. Cruz-Topete D., Dominic P., Stokes K.Y. Uncovering sex-specifi c mechanisms of action of testosterone and redox balance. Redox Biol. 2020;31:101490. DOI: 10.1016/j.redox.2020.101490
9. Stone T., Stachenfeld N.S. Pathophysiological eff ects of androgens on the female vascular system. Biol. Sex. Diff er. 2020;11:45. DOI: 10.1186/s13293-020-00323-6
10. Zhao D., Guallar E., Ouyang P., Subramanya V., Vaidya D., Ndumele C.E. et al. Endogenous sex hormones and incident cardiovascular disease in post-menopausal women. J. Am. Coll. Cardiol. 2018;71(22):2555–2566. DOI: 10.1016/j.jacc.2018.01.083
11. Zhao D., Guallar E., Ballantyne C.M., Post W.S., Ouyang P., Vaidya D. et al. Sex hormones and incident heart failure in men and postmenopausal women: the atherosclerosis risk in communities study. J. Clin. Endoc. Metab. 2020;105(10):e3798–e3807. DOI: 10.1210/clinem/dgaa500
12. Jia X., Sun C., Tang O., Gorlov O., Nambi V., Virani S.S. et al. Plasma dehydroepiandrosterone sulfate and cardiovascular disease risk in older men and women. J. Clin. Endoc. Metab. 2020;105(12):e4304– e4327. DOI: 10.1210/clinem/dgaa518
13. Schaff rath G., Kische H., Gross S., Wallaschofski H. et al. Association of sex hormones with incident 10-year cardiovascular disease and mortality in women. Maturitas. 2015;82(4):424–430. DOI: 10.1016/j.maturitas.2015.08.009
14. Holmegard H.N., Nordestgaard B.G., Jensen G.B. et al. Sex hormones and ischemic stroke: a prospective cohort study and meta-analyses. J. Clin. Endoc. Metab. 2016;101(1):69–78. DOI: 10.1210/jc.20152687
15. Xu S., Dai W., Li J., Li Y. Synergistic eff ect of estradiol and testosterone protects against IL-6- inducedcardiomyocyte apoptosismediated by TGF-β1. Int. J. Clin. Exp. Pathol. 2018;11(1):10–26
16. Pruett S.T., Bushnev A., Hagedorn K., Adiga M., Haynes C.A., Sullards M.C. et al. Biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols. J. Lipid Res. 2008;49(8):1621–1639. DOI: 10.1194/jlr.R800012-JLR200
17. Sasset L., Zhang Y., Dunn T.M., Lorenzo A.D. Sphingolipid de novo biosynthesis: a rheostat of cardiovascular homeostasis. Trends Endocrinol. Metab. 2016;27(11):807–819. DOI: 10.1016/j.tem.2016.07.005
18. Harrison P.J., Dunn T.M., Campopiano D.J. Sphingolipid biosynthesis in man and microbes. Nat. Prod. Rep. 2018;35(9):921–954.DOI: 10.1039/c8np00019k
19. Shu H., Peng Y., Hang W., Li N., Zhou N., Wang D.W. Emerging roles of ceramide in cardiovascular diseases. Aging Dis. 2022;13(1):232– 245. DOI: 10.14336/AD.2021.0710
20. de Mello V.D., Lankinen M., Schwab U., Kolhmainen M., Lehto S. et al. Link between plasma ceramides, infl ammation and insulin resistance: Association with serum IL-6 concentration in patients with coronary heart disease. Diabetologia. 2009;52(12):2612–2615. DOI: 10.1007/s00125-009-1482-9
21. Spijkers L.J., van den Akker R.F., Janssen B., Debets J.J. et al. Hypertension is associated with marked alterations in sphingolipid biology: A potential role for ceramide. PLoS ONE. 2011;6(7):e21817. DOI: 10.1371/journal.pone.0021817
22. Pan W., Yu J., Shi R., Yan L., Yang T., Li Y. et al. Elevation of ceramide and activation of secretory acid sphingomyelinase in patients with acute coronary syndromes. Coron. Artery Dis. 2014;25(3):230–235. DOI: 10.1097/MCA.0000000000000079
23. Havulinna A.S., Sysi-Aho M., Hilvo M., Kauhanen D.,Hurme R., Ekroos K. et al. Circulating ceramides predict cardiovascular outcomes in the Population-Based FINRISK 2002 Cohort. Arterioscler. Thromb. Vasc. Biol. 2016;36(12):2424–2430. DOI: 10.1161/ATVBAHA.116.307497
24. Egom E.E., Mohamed T.M., Mamas M.A., Shi Y., Liu W., Chirico D. et al. Activation of Pak1/Akt/eNOS signaling following sphingosine-1-phosphate release as part of a mechanism protecting cardiomyocytes against ischemic cell injury. Am. J. Physiol. Heart Circ. Physiol. 2011;301(4):H1487–H1495. DOI: 10.1152/ajpheart.01003.2010
25. Guo S., Yu Y., Zhang N., Cui Y., Zhai L., Li H. et al. Higher level of plasma bioactive molecule sphingosine 1-phosphate in women is associated with estrogen. Biochim. Biophys. Acta. 2014;1841(6):836–846. DOI: 10.1016/j.bbalip.2014.02.005
26. Fichtlscherer S., Zeiher A.M., Dimmeler S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases. Arterioscler. Thromb. Vasc. Biol. 2011;31(11):23832390. DOI: 10.1161/ATVBAHA.111.226696
27. Perez-Cremades D., Mompeon A., Vidal-Gomez X., Hermenegildo C., Novella S. Role of miRNA in the regulatory mechanisms of estrogens in cardiovascular ageing. Oxid Med Cell Longev. 2018;2018:6082387. DOI: 10.1155/2018/6082387
28. Vidal-Gomez X., Perez-Cremades D., Mompeon A., Dantas A.P., Novella S., Hermenegildo C. MicroRNA as crucial regulators of gene expression in estradiol-treated human endothelial сells. Cell Physiol. Biochem. 2018;45(5):18781892. DOI: 10.1159/000487910
29. Gupta A., Caff rey E., Callagy G., Gupta S. Oestrogen-dependent regulation of miRNA biogenesis: many ways to skin the cat. Biochem. Soc. Trans. 2012;40(4):752758. DOI: 10.1042/BST20110763
30. Zhao J., Imbrie G.A., Baur W.E., Lyer L.K., Aronovitz M.J., Kershaw T.B. et al. Estrogen receptor-mediated regulation of microRNA inhibits proliferation of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2013;33(2):257265. DOI: 10.1161/ATVBAHA.112.300200
31. Mori T., Durand J., Chen Y., Thompson J.A., Bakir S., Oparil S. Eff ects of short-term estrogen treatment on the neointimal response to balloon injury of rat carotid artery. Am. J. Cardiol. 2000;85(10):12761279. DOI: 10.1016/s0002-9149(00)00748-7
32. Xing D., Nozell S., Chen Y.F., Hage F., Oparil S. Estrogen and mechanisms of vascular protection. Arterioscler. Thromb. Vasc. Biol. 2009;29(3):289295. DOI: 10.1161/ATVBAHA.108.182279
33. Wang L., Tang Z.P., Zhao W., Cong B.H., Lu J.Q., Tang X.L., et al. MiR-22/Sp-1 links estrogens with the up-regulation of cystathionine gamma-lyase in myocardium, which contributes to estrogenic cardioprotection against oxidative stress. Endocrinology. 2015;156(6):21242137. DOI: 10.1210/en.2014-1362
34. Queiros A.M., Eschen C., Fliegner D., Kararigas G., Dworatzek E., Westphal C. et al. Sex- and estrogen-dependent regulation of a miRNA network in the healthy and hypertrophied heart. Int. J. Cardiol. 2013;169(5):331338. DOI: 10.1016/j.ijcard.2013.09.002
35. Eberle D., Hegarty B., Bossard P., et al. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 2004;86(11):839– 48. DOI: 10.1016/j.biochi.2004.09.018
36. Mullen E., Brown R.M., Osborne T.F. et al. Soy isofl avones aff ect sterol regulatory element binding proteins (SREBPs) and SREBP-regulated genes in HepG2 cells. J. Nutr. 2004;134(11):2942–7.DOI: 10.1093/jn/134.11.2942
37. Xue B., Johnson A.K., Hay M. Sex diff erences in angiotensin IIe and aldosterone-induced hypertension: the central protective effects of estrogen. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013;305(5):R459R463. DOI: 10.1152/ajpregu.00222.2013
38. Moreau M.E., Garbacki N., Molinaro G., Brown N.J., Marceau., Adam A. The kallikrein-kinin system: current and future pharmacological targets. J. Pharmacol Sci. 2005;99(1):638. DOI: 10.1254/jphs.srj05001x
39. Hamming I., Cooper M.E., Haagmans B.L., Hooper N.M., Korstanje A.D., Timens W. et al. The emerging role of ACE2 in physiology and disease. J. Pathol. 2007;212(1):111. DOI: 10.1002/path.2162
40. Xue Q., Xiao D., Zhang L. Estrogen regulates angiotensin II receptor expression patterns and protects the heart from ischemic injury in female rats. Biol. Reprod. 2015;93(1):6. DOI: 10.1095/biolreprod.115.129619
Review
For citations:
Zaitseva E.V., Popov V.V., Khidirova L.D. Features of the development of cardiovascular pathology in menopausal women. Clinical Medicine (Russian Journal). 2024;102(7):493–498. (In Russ.) https://doi.org/10.30629/0023-2149-2024-102-7-493-498