Morphometric variants of remodeling and diastolic function of the left ventricle in late postmenopausal patients with vitamin D deficiency
https://doi.org/10.30629/0023-2149-2023-101-12-623-629
Abstract
Aim. To reveal the features of the structural-geometric remodeling of the left chambers of the heart, the diastolic function of the left ventricle and to assess the presence of calcification of the valvular structures of the heart in late postmenopausal women with different levels of vitamin D. Material and methods. The cross-sectional study included 123 postmenopausal women. A standard transthoracic echocardiography was performed with an assessment of morphometric variants of remodeling of the left chambers of the heart and its diastolic function according to the transmitral flow. The significance of differences was assessed using the Mann–Whitney test, χ2 Pearson. Differences and correlations were considered significant at p < 0.05. Results. The median concentration of 25(OH)D in the sample was 20.51 ng/ml (15.8÷26.73). Adequate serum concentration of 25(OH)D was observed in 23 (19%) patients (group 1), in 100 (81%) cases vitamin D deficiency was detected (group 2). In group 1 — 7 (31%) patients had normal geometry (NG) of the left ventricle (LV), LV concentric remodeling (CR) was diagnosed in 1 (4%) case, LV concentric hypertrophy (CH) was diagnosed in 3 (13%) cases, and LV eccentric hypertrophy (EH) was detected in 12 (52%) cases. In Group 2, LV NG was diagnosed in 27 (27%) cases, LV CR was detected in 8 (8%) cases, LV CH was detected in 31 (31%) cases, and LV EH was verified in 34 (34%) cases, the differences are insignificant (p = 0.24). Patients of group 2 showed a statistically significant increase in the volume of the right atrium (RA) and thickness of the posterior wall of the left ventricle (TZSLV). In group 1, in 11 (50%) cases, rigid-type diastolic dysfunction (DD) was detected, and in 11 (50%) cases, a pseudo-normal type of DD was detected. In group 2, pseudonormal myocardial DD was detected in 26 (26%) patients, 74 (74%) patients had rigid-type DD, differences between groups were significant (p < 0.001). Calcifications were found in the annulus fibrosus in 16 (70%) cases in group 1 and in 88 (88%) patients in group 2, the differences were significant (p = 0.04). Conclusion. In the study, data were obtained indicating a significant contribution of vitamin D deficiency to changes in the geometry of the left chambers of the heart, diastolic function of the left ventricle, and calcification of valvular structures.
About the Authors
M. A. ShambatovRussian Federation
Muraz A. Shambatov — Graduate student of the Department of Pharmacology and Clinical Pharmacology
620028, Yekaterinburg
N. V. Izmozherova
Russian Federation
Nadezhda V. Izmozherova — Doctor of Medical Sciences, Associate Professor, Head of the Department of Pharmacology and Clinical Pharmacology; chief freelance specialist-clinical pharmacologist of the Ministry of Health of the Sverdlovsk region
620028, Yekaterinburg
620990, Yekaterinburg
A. A. Popov
Russian Federation
Artem A. Popov — Doctor of Medical Sciences, Associate Professor, Head of the Department of Hospital Therapy and Emergency Medical Care
620028, Yekaterinburg
620990, Yekaterinburg
I. F. Grishina
Russian Federation
Irina F. Grishina — Doctor of Medical Sciences, Professor, Head of the Department of Outpatient Therapy, Ultrasound and Functional Diagnostics
620028, Yekaterinburg
A. A. Vikhareva
Russian Federation
Anna A. Vikhareva — Assistant at the Department of Pharmacology and Clinical Pharmacology
620028, Yekaterinburg
620990, Yekaterinburg
A. V. Ryabinina
Russian Federation
Alla V. Ryabinina — Head physician of the clinic
620990, Yekaterinburg
References
1. Lavie C.J., Dinicolantonio J.J., Milani R., O’Keefe J.H. Vitamin D and cardiovascular health. Circulation. 2013;128(22):2404–2406. DOI: 10.1161/CIRCULATIONAHA.113.002902
2. Sahota O. Understanding vitamin D deficiency. Age Ageing. 2014;43(5):589–591. DOI: 10.1093/ageing/afu104
3. Holick M.F. Vitamin D status: measurement, interpretation, and clinical application. Ann. Epidemiol. 2009;19(2):73–78. DOI: 10.1016/J.ANNEPIDEM.2007.12.001
4. Fleet J.C. The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol. Cell. Endocrinol. 2017;453:36–45. DOI:10.1016/J.MCE.2017.04.008
5. Cosentino N., Campodonico J., Milazzo V. Vitamin D and cardiovascular disease: Current evidence and future perspectives. Nutrients. 2021;13(10). DOI:10.3390/nu13103603
6. Drapkina O.M., Shepel R.N. Pleiotropic effects of vitamin D. Rational Pharmacotherapy in Cardiology. 2016;12(2):227–233. (In Russian) DOI: 10.20996/1819-6446-2016-12-2-227-233
7. Pilz S., Tomaschitz A. Role of vitamin D in arterial hypertension. Expert. Rev. Cardiovasc. Ther. 2010;8(11):1599–1608. DOI: 10.1586/erc.10.142
8. Sluyter J.D., Camargo C.A., Stewart A.W. et al. Effect of monthly, high-dose, long-term vitamin D supplementation on central blood pressure parameters: A randomized controlled trial substudy. J. Am. Heart Assoc. 2017;6(10). DOI: 10.1161/JAHA.117.006802
9. Pilz S., Tomaschitz A. Vitamin D status: To be considered in heart failure patients! Eur. J. Heart Fail. 2011;13(6):595–596. DOI: 10.1093/eurjhf/hfr018
10. Liu L.C.Y., Voors A.A., van Veldhuisen D.J. Vitamin D status and outcomes in heart failure patients. Eur. J. Heart Fail. 2011;13(6):619–625. DOI: 10.1093/EURJHF/HFR032
11. Nolte K., Herrmann-Lingen C., Platschek L. Vitamin D deficiency in patients with diastolic dysfunction or heart failure with preserved ejection fraction. ESC Heart Fail. 2019;6(2):262–270. DOI: 10.1002/ehf2.12413
12. Schierbeck L.L., Jensen T.S., Bang U., Jensen G., Køber L., Jensen J.E.B. Parathyroid hormone and vitamin D—markers for cardiovascular and all cause mortality in heart failure. Eur. J. Heart Fail. 2011;13(6):626–632. DOI: 10.1093/EURJHF/HFR016
13. Pilz S., März W., Wellnitz B. et al. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross-sectional study of patients referred for coronary angiography. J. Clin. Endocrinol. Metab. 2008;93(10):3927–3935. DOI: 10.1210/JC.2008-0784
14. Pandit A., Mookadam F., Boddu S. et al. Vitamin D levels and left ventricular diastolic function. Open Heart. 2014;1(1):e000011. DOI: 10.1136/OPENHRT-2013-000011
15. Lips P., Hosking D., Lippuner K. et al. The prevalence of vitamin D inadequacy amongst women with osteoporosis: an international epidemiological investigation. J. Intern. Med. 2006;260(3):245–254. DOI: 10.1111/J.1365-2796.2006.01685.X
16. Maslov P.Z., Kim J.K., Argulian E. et al. Is Cardiac Diastolic Dysfunction a Part of Post-Menopausal Syndrome? JACC Heart Fail. 2019;7(3):192–203. DOI: 10.1016/J.JCHF.2018.12.018
17. Azevedo P.S., Polegato B.F., Minicucci M.F. et al. Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq. Bra.s Cardiol. 2016;106(1):62–69. DOI: 10.5935/ABC.20160005
18. Nagueh S.F., Smiseth O.A., Appleton C.P. et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the Аmerican society of echocardiography and the Еuropean association of cardiovascular imaging. Eur. Heart J. Cardiovasc Imaging. 2016;17(12):1321–1360. DOI: 10.1093/EHJCI/JEW082
19. Chand V. Understanding diastolic dysfunction. JAAPA. 2006;19(3). DOI: 10.1097/01720610-200603000-00006
20. Obokata M., Reddy Y.N.V, Borlaug B.A. Diastolic dysfunction and heart failure with preserved ejection fraction: understanding mechanisms by using noninvasive methods. JACC Cardiovasc. Imaging. 2020;13(1):245–257. DOI: 10.1016/J.JCMG.2018.12.034
21. Paulus W.J., Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013;62(4):263–271. DOI: 10.1016/j.jacc.2013.02.092
22. Kim D.H., Meza C.A., Clarke H., Kim J.S., Hickner R.C. Vitamin D and endothelial function. Nutrients. 2020;12(2). DOI: 10.3390/NU12020575
23. Porter T.R., Mulvagh S.L., Abdelmoneim S.S. et al. Clinical Applications of Ultrasonic Enhancing Agents in Echocardiography: 2018 American Society of Echocardiography Guidelines Update. Journal of the American Society of Echocardiography. 2018;31(3):241–274. DOI: 10.1016/J.ECHO.2017.11.013
24. Rus sian Society of Cardiology (RSC) (RSC). 2020 Clinical practice gui delines for Chronic heart failure. Russian Journal of Cardiology. 2020; 25(11):311–374. (In Russian) DOI: 10.15829/1560-4071-2020-4083
25. Ganau A., Devereux R.B., Roman M.J. et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J. Am. Coll. Cardiol. 1992;19(7):1550–1558. DOI: 10.1016/0735-1097(92)90617-v
26. du Bois D., du Bois E.F. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition. 1989;5(5):303–313
27. Lang R.M., Badano L.P., Victor M.A. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography. 2015;28(1):1–39.e14. DOI: 10.1016/J.ECHO.2014.10.003
28. Pigarova E.A., Rozhinskaya L.Y., Belaya Z.E. et al. Russian Association of Endocrinologists recommendations for diagnosis, treatment and prevention of Vitamin D deficiency in adults. Probl. Endokrinol. (Mosk). 2016;62(4):60–84. (In Russian) DOI: 10.14341/PROBL201662460-84
29. Ameri P., Canepa M., Milaneschi Y. et al. Relationship between vitamin D status and left ventricular geometry in a healthy population: results from the Baltimore Longitudinal Study of Aging. J. Intern. Med. 2013;273(3):253. DOI: 10.1111/JOIM.12007
30. Osipova O.A., Gosteva E.V., Tatarintseva Y.V., Zhernakova N.I., Ekusheva E.V., Gorelik S.G. Vitamin D deficiency in elderly with arterial hypertension and left ventricular diastolic dysfunction. Adv. Gerontol. 2021;34(4):566–571. (In Russian)
31. van Ballegooijen A.J., Snijder M.B., Visser M. et al. Vitamin D in relation to myocardial structure and function after eight years of follow-up: The Hoorn Study. Ann. Nutr. Metab. 2012;60(1):69–77. DOI: 10.1159/000336173
32. Chen S., Law C.S., Grigsby C.L. et al. Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation. 2011;124(17):1838–1847. DOI: 10.1161/CIRCULATIONAHA.111.032680
33. Sigmund C.D. Regulation of renin expression and blood pressure by vitamin D3. Journal of Clinical Investigation. 2002;110(2):155–156. DOI: 10.1172/JCI16160
34. Li Y.C. Discovery of vitamin D hormone as a negative regulator of the renin-angiotensin system. Clin. Chem. 2014;60(3):561–562. DOI: 10.1373/clinchem.2013.216150
35. Zhang W., Chen L., Zhang L. et al. Administration of exogenous 1,25(OH)2D3 normalizes overactivation of the central renin-angiotensin system in 1α(OH)ase knockout mice. Neurosci. Lett. 2015;588:184–189. DOI: 10.1016/J.NEULET.2015.01.013
36. Yaralieva E.K., Skripnikova I.A., Shishkova V.N., Drapkina O.M. Vitamin D and chronic heart failure: relationship and intersection points. Atmosfera. Novosti kardiologii. 2021;1:54–59. (In Russian) DOI: 10.24412/2076-4189-2021-1234737
37. Surdu A.M., Pînzariu O., Ciobanu D.M. et al. Vitamin D and its role in the lipid metabolism and the development of atherosclerosis. Biomedicines. 2021;9(2):1–16. DOI: 10.3390/BIOMEDICINES9020172
38. Chauss D., Freiwald T., McGregor R. et al. Autocrine vitamin D signaling switches off pro-inflammatory programs of TH1 cells. Nat. Immunol. 2022;23(1):62–74. DOI: 10.1038/S41590-021-01080-3
39. Wang T.J. Vitamin D and cardiovascular disease. Ann. Rev. Med. 2016;67:261–272. DOI: 10.1146/ANNUREV-MED-051214-025146
40. Bikle D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014;21(3):319–329. DOI: 10.1016/J. CHEMBIOL.2013.12.016
41. Nitsa A., Toutouza M., Machairas N., Mariolis A., Philippou A., Koutsilieris M. Vitamin D in cardiovascular disease. In Vivo. 2018;32(5):977–981. DOI: 10.21873/INVIVO.11338
42. Yabluchanskiy A., Ma Y., Iyer R.P., Hall M.E., Lindsey M.L. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology. 2013;28(6):391–403. DOI: 10.1152/ PHYSIOL.00029.2013
43. Wang X., Khalil R.A. Matrix Metalloproteinases, Vascular remodeling, and vascular disease. Adv. Pharmacol. 2018;81:241–330. DOI: 10.1016/BS.APHA.2017.08.002
44. Wu J., Garami M., Cheng T., Gardner D.G. 1,25(OH)2 vitamin D3, and retinoic acid antagonize endothelin-stimulated hypertrophy of neonatal rat cardiac myocytes. J. Clin. Invest. 1996;97(7):1577–1588. DOI: 10.1172/JCI118582
45. Aleksova A., Janjusevic M., Gagno G. et al. The role of exercise-induced molecular processes and vitamin D in improving cardiorespiratory fitness and cardiac rehabilitation in patients with heart failure. Front Physiol. 2022;12. DOI: 10.3389/FPHYS.2021.794641
46. Podzolkov V.I., Pokrovskaya AE., Panasenko O.I. Vitamin D deficiency and cardiovascular pathology. Terapevticheskii arkhiv 2018;90(9):144–150. (In Russian) DOI: 10.26442/terarkh2018909144-150
47. Gilad L.A., Schwartz B. Association of estrogen receptor beta with plasma-membrane caveola components: implication in control of vitamin D receptor. J. Mol. Endocrinol. 2007;38(6):603–618. DOI: 10.1677/JME-06-0040
Review
For citations:
Shambatov M.A., Izmozherova N.V., Popov A.A., Grishina I.F., Vikhareva A.A., Ryabinina A.V. Morphometric variants of remodeling and diastolic function of the left ventricle in late postmenopausal patients with vitamin D deficiency. Clinical Medicine (Russian Journal). 2023;101(12):623-629. (In Russ.) https://doi.org/10.30629/0023-2149-2023-101-12-623-629