Preview

Клиническая медицина

Расширенный поиск

Анатомические факторы внутрисердечного тромбообразования в патогенезе кардиоэмболического инсульта

https://doi.org/10.30629/0023-2149-2023-101-9-10-441-448

Аннотация

Кардиоэмболический инсульт, как и другие виды острого нарушения мозгового кровотока, является общемировой приоритетной медико-социальной проблемой. В настоящем обзоре проанализирована роль анатомических факторов, которые наряду с другими факторами тромбообразования в полостях сердца могут представлять собой важное и при этом недостаточно изученное звено патогенеза этого заболевания.

Об авторах

В. Е. Милюков
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Милюков Владимир Ефимович — д-р мед. наук, профессор, профессор кафедры анатомии человека лечебного факультета

117997, Москва



В. А. Брюханов
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Россия

Брюханов Валерий Александрович — студент Института клинической медицины им. Н.В. Склифосовского

119991, Москва



К. К. Нгуен
Университет им. Йерсена
Вьетнам

Нгуен Као Кыонг — канд. мед. наук, декан факультета фармако-медсестринского дела

670000, Далат



Список литературы

1. Virani S.S. et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–e596. DOI: 10.1161/CIR.0000000000000757

2. Donkor E.S. Stroke in the 21st century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res. Treat. 2018;2018:3238165. Published 2018 Nov 27. DOI: 10.1155/2018/3238165

3. GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795–820. DOI: 10.1016/S1474-4422(21)00252-0

4. Ма-Ван-дэ А.Ю., Витковский Ю.А., Ширшов Ю.А. Эпиде миологические аспекты и факторы риска развития ишемического инсульта. Забайкальский медицинский вестник. 2022;2:41–52.

5. Singh R.J., Chen S., Ganesh A., Hill M.D. Long-term neurological, vascular, and mortality outcomes after stroke. Int. J. Stroke. 2018;13(8):787-796. DOI: 10.1177/1747493018798526

6. Бизюк А.П., Барич И.В. Особенности полушарной латерализа ции понятийного и образного мышления у больных с право- и левосторонней локализацией очага ишемического инсульта. Евразийский союз ученых. Серия: педагогические, психологические и философские науки. 2021;5(86):54–62.

7. Katan M., Luft A. Global burden of stroke. Semin. Neurol. 2018;38(2):208–211. DOI: 10.1055/s-0038-1649503

8. Яхно H.H, Виленский Б.С. Инсульт как медикосоциальная проблема. Русский медицинский журнал. 2005;13(12):807–15.

9. Kleindorfer D.O., Towfi ghi A., Chaturvedi S. et al. Guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association [published correction appears in Stroke. 2021;52(7):e483–e484]. Stroke. 2021;52(7):e364–e467. DOI: 10.1161/STR.0000000000000375

10. Topcuoglu M.A., Liu L., Kim D.E., Gurol M.E. Updates on prevention of cardioembolic strokes. J. Stroke. 2018;20(2):180–196. DOI: 10.5853/jos.2018.00780

11. Arboix A., Alió J. Cardioembolic stroke: clinical features, specifi c cardiac disorders and prognosis. Current cardiology reviews. 2010;6(3):150–61. DOI: 10.2174/157340310791658730

12. Hooman K., Healey J. Cardioembolic stroke. Circulation research. 2017;120(3):514–526. DOI: 10.1161/CIRCRESAHA.116.308407

13. Wolf P.A. et al. Atrial fi brillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991;22(8):983–8. DOI: 10.1161/01.str.22.8.983

14. Friberg L., Rosenqvist M., Lindgren A., Terént A., Norrving B., Asplund K. High prevalence of atrial fi brillation among patients with ischemic stroke. Stroke. 2014;(45):2599–605. DOI: 10.1161/STROKEAHA.114.006070

15. Babkair L.A. Cardioembolic stroke: a case study. Critical care nurse. 2017;37(1):27–39. DOI: 10.4037/ccn2017127

16. Arboix A., Alio J. Acute cardioembolic cerebral infarction: answers to clinical questions. Current cardiology reviews. 2012;8(1):54–67. DOI: 10.2174/157340312801215791

17. Ding W.Y., Gupta Dh., Lip G.Y.H. Atrial fi brillation and the prothrombotic state: revisiting Virchow’s triad in 2020. Heart (Bri tish Cardiac Society). 2020;106(19):1463–1468. DOI: 10.1136/heartjnl-2020-316977

18. Ntaios G., Hart R.G. Embolic stroke. Circulation. 2017;136(25):2403– 2405. DOI: 10.1161/CIRCULATIONAHA.117.030509

19. Pepi M., Evangelista A., Nihoyannopoulos P. et al. Recommendations for echocardiography use in the diagnosis and management of cardiac sources of embolism: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur. J. Echocardiogr. 2010;11(6):461–476. DOI: 10.1093/ejechocard/jeq045

20. Di Minno M.N.D., Ambrosino P., Russo A.D., Casella M., Tremoli E., Tondo C. Prevalence of left atrial thrombus in patients with non-valvular atrial fi brillation. A systematic review and meta-analysis of the literature. Thrombosis and haemostasis. 2016;115(3):663– 77. DOI: 10.1160/TH15-07-0532

21. Abe Y., Asakura T., Gotou J., Iwai M., Watanabe Y., Sando M., Ishikawa S., Nagata K., Saito T., Maehara K., Maruyama Y. Prediction of embolism in atrial fi brillation: classifi cation of left atrial thrombi by transesophageal echocardiography. Jpn. Circ. J. 2000;64(6):411– 415. DOI: 10.1253/jcj.64.411

22. Blackshear J.L., Odell J.A. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fi brillation. Ann. Thorac. Surg. 1996;61(2):755–759. DOI: 10.1016/0003-4975(95)00887-X

23. Cresti A., García-Fernández M.A., Sievert H. et al. Prevalence of extra-appendage thrombosis in non-valvular atrial fi brillation and atrial fl utter in patients undergoing cardioversion: a large transoesophageal echo study. EuroIntervention. 2019;15(3):e225–e230. DOI: 10.4244/EIJ-D-19-00128

24. Beigel R., Wunderlich N.C., Ho S.Y., Arsanjani R., Siegel R.J. The left atrial appendage: anatomy, function, and noninvasive evaluation. JACC Cardiovasc. Imaging. 2014;7(12):1251–1265. DOI: 10.1016/j.jcmg.2014.08.009

25. Hensey M., O’Neill L., Mahon C., Keane S., Fabre A., Keane D. A Review of the anatomical and histological attributes of the left atrial appendage with descriptive pathological examination of morphology and histology. J. Atr. Fibrillation. 2018;10(6):1650. DOI: 10.4022/jafib.1650

26. Kim Y.G., Shim J., Oh S.K., Lee K.N., Choi J.I., Kim Y.H. Electrical isolation of the left atrial appendage increases the risk of ischemic stroke and transient ischemic attack regardless of postisolation fl ow velocity. Heart Rhythm. 2018;15(12):1746–1753. DOI: 10.1016/j.hrthm.2018.09.012

27. Al-Saady N.M., Obel O.A., Camm A.J. Left atrial appendage: structure, function, and role in thromboembolism. Heart. 1999;82(5):547– 554. DOI: 10.1136/hrt.82.5.547

28. Di Biase L., Santangeli P., Anselmino M., Mohanty P., Salvetti I. et al. Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fi brillation? Results from a multicenter study. J. Am.Coll. Cardiol. 2012;60(6):531–8. DOI: 10.1016/j.jacc.2012.04.032

29. Kosiuk J. , Nedios S., Kornej J., Koutalas E., Bertagnolli L. et al. Impact of left atrial appendage morphology on peri-interventional thromboembolic risk during catheter ablation of atrial fi brillation. Heart rhythm. 2014;11(9):1522–7. DOI:10.1016/j.hrthm.2014.05.022

30. Khurram I.M., Dewire J., Mager M., Maqbool F., Zimmerman S.L. et al. Relationship between left atrial appendage morphology and stroke in patients with atrial fi brillation. Heart rhythm. 2013;10(12):1843– 9. DOI: 10.1016/j.hrthm.2013.09.065

31. Wu L., Liang E., Fan S., Zheng L., Du Zh. et al. Relation of left atrial appendage morphology determined by computed tomography to prior stroke or to increased risk of stroke in patients with atrial fibrillation. Am. J. Cardiol. 2019;123(8):1283–1286. DOI: 10.1016/j.amjcard.2019.01.024

32. Yaghi S., Chang A., Akiki R. et al. The left atrial appendage morphology is associated with embolic stroke subtypes using a simple classifi cation system: A proof of concept study. J. Cardiovasc. Comput. Tomogr. 2020;14(1):27–33. DOI: 10.1016/j.jcct.2019.04.005

33. He J., Fu Z., Yang L., Liu W., Tian Y. et al. The predictive value of a concise classifi cation of left atrial appendage morphology to thrombosis in non-valvular atrial fi brillation patients. Clin. Cardiol. 2020;43(7):789–795. DOI: 10.1002/clc.23381

34. Słodowska K., Szczepanek E., Dudkiewicz D. et al. Morphology of the left atrial appendage: introduction of a new simplifi ed shapebased classifi cation system. Heart Lung Circ. 2021;30(7):1014– 1022. DOI: 10.1016/j.hlc.2020.12.006

35. Smit J.M., Simon J., El Mahdiui M. et al. Anatomical characteristics of the left atrium and left atrial appendage in relation to the risk of stroke in patients with versus without atrial fi brillation. Circ. Arrhythm. Electrophysiol. 2021;14(8):e009777. DOI: 10.1161/CIRCEP.121.009777

36. Patti G., Pengo V., Marcucci R. et al. The left atrial appendage: from embryology to prevention of thromboembolism. Eur. Heart J. 2017;38(12):877–887. DOI: 10.1093/eurheartj/ehw159

37. Malik R., Alyeshmerni D.M., Wang Z. et al. Prevalence and predictors of left atrial thrombus in patients with atrial fi brillation: is transesophageal echocardiography necessary before cardioversion? Cardiovasc. Revasc. Med. 2015;16(1):12–14. DOI: 10.1016/j.carrev.2014.12.009

38. Chen L., Xu C., Chen W., Zhang C. Left atrial appendage orifi ce area and morphology is closely associated with fl ow velocity in patients with nonvalvular atrial fi brillation. BMC Cardiovasc. Disord. 2021;21(1):442. Published 2021 Sep 16. DOI: 10.1186/s12872-021-02242-9

39. Lee J.M., Seo J., Uhm J.S. et al. Why Is Left Atrial Appendage Morphology Related to Strokes? An Analysis of the Flow Velocity and Orifi ce Size of the Left Atrial Appendage. J. Cardiovasc. Electrophysiol. 2015;26(9):922–927. DOI: 10.1111/jce.12710

40. Lee J.M., Kim J.B., Uhm J.S., Pak H.N., Lee M.H., Joung B. Additional value of left atrial appendage geometry and hemodynamics when considering anticoagulation strategy in patients with atrial fi brillation with low CHA2DS2-VASc scores. Heart Rhythm. 2017;14(9):1297–1301. DOI: 10.1016/j.hrthm.2017.05.034

41. Fukushima K., Fukushima N., Kato K. et al. Correlation between left atrial appendage morphology and fl ow velocity in patients with paroxysmal atrial fi brillation. Eur. Heart J. Cardiovasc. Imaging. 2016;17(1):59–66. DOI: 10.1093/ehjci/jev117

42. Masci A., Barone L., Dedè L. et al. The Impact of Left Atrium Appendage Morphology on Stroke Risk Assessment in Atrial Fibrillation: A Computational Fluid Dynamics Study. Front Physiol. 2019;9:1938. Published 2019 Jan 22. DOI:10.3389/fphys.2018.01938

43. Fang R., Li Y., Zhang Y., Chen Q., Liu Q., Li Z. Impact of left atrial appendage location on risk of thrombus formation in patients with atrial fi brillation. Biomech. Model Mechanobiol. 2021;20(4):1431– 1443. DOI: 10.1007/s10237-021-01454-4

44. Alinezhad L., Ghalichi F., Ahmadlouydarab M., Chenaghlou M. Left atrial appendage shape impacts on the left atrial fl ow hemodynamics: A numerical hypothesis generating study on two cases. Comput. Methods Programs Biomed. 2022;213:106506. DOI: 10.1016/j.cmpb.2021.106506

45. Lee Y., Park H.C., Lee Y., Kim S.G. Comparison of morphologic features and fl ow velocity of the left atrial appendage among patients with atrial fi brillation alone, transient ischemic attack, and cardioembolic stroke. Am. J. Cardiol. 2017;119(10):1596–1604. DOI: 10.1016/j.amjcard.2017.02.016

46. Wang F., Zhu M., Wang X. et al. Predictive value of left atrial appendage lobes on left atrial thrombus or spontaneous echo contrast in patients with non-valvular atrial fi brillation. BMC Cardiovasc. Disord. 2018;18(1):153. Published 2018 Jul 31. DOI: 10.1186/s12872-018-0889-y

47. Velangi P.S., Choo C., Chen K.A. et al. Long-term embolic outcomes after detection of left ventricular thrombus by late gadolinium enhancement cardiovascular magnetic resonance imaging: a matched cohort study. Circ. Cardiovasc. Imaging. 2019;12(11):e009723. DOI: 10.1161/CIRCIMAGING.119.009723

48. Saric M., Armour A.C., Arnaout M.S. et al. Guidelines for the Use of Echocardiography in the Evaluation of a Cardiac Source of Embolism. J. Am. Soc. Echocardiogr. 2016;29(1):1–42. DOI: 10.1016/j.echo.2015.09.011

49. Alkindi F., Hamada A.H., Hajar R. Cardiac thrombi in different clinical scenarios. Heart Views. 2013;14(3):101–105. DOI: 10.4103/1995-705X.125924.

50. Ram P., Shah M., Sirinvaravong N. et al. Left ventricular thrombosis in acute anterior myocardial infarction: Evaluation of hospital mortality, thromboembolism, and bleeding. Clin. Cardiol. 2018;41(10):1289–1296. DOI: 10.1002/clc.23039

51. Meurin P., Brandao Carreira V., Dumaine R. et al. Incidence, diagnostic methods, and evolution of left ventricular thrombus in patients with anterior myocardial infarction and low left ventricular ejection fraction: a prospective multicenter study. Am. Heart J. 2015;170(2):256–262. DOI: 10.1016/j.ahj.2015.04.029

52. Weinsaft J.W., Kim J., Medicherla C.B. et al. Echocardiographic Algorithm for Post-Myocardial Infarction LV Thrombus: A Gatekeeper for Thrombus Evaluation by Delayed Enhancement CMR. JACC Cardiovasc. Imaging. 2016;9(5):505–515. DOI: 10.1016/j.jcmg.2015.06.017

53. Oh J.K., Park J.H., Lee J.H., Kim J., Seong I.W. Shape and mobility of a left ventricular thrombus are predictors of thrombus resolution. Korean Circ. J. 2019;49(9):829–837. DOI: 10.4070/kcj.2018.0346

54. Garg P., van der Geest R.J., Swoboda P.P. et al. Left ventricular thrombus formation in myocardial infarction is associated with altered left ventricular blood fl ow energetics. Eur. Heart J. Cardiovasc. Imaging. 2019;20(1):108–117. DOI: 10.1093/ehjci/jey121

55. Sakakibara T., Suwa K., Ushio T. et al. Intra-left ventricular hemodynamics assessed with 4D fl ow magnetic resonance imaging in patients with left ventricular thrombus. Int. Heart J. 2021;62(6):1287– 1296. DOI:10.1536/ihj.20-792

56. Vedula V., Seo J.H., Lardo A.C. et al. Effect of trabeculae and papillary muscles on the hemodynamics of the left ventricle. Theor. Comput. Fluid Dyn. 2016;30:3–21. DOI: 10.1007/s00162-015-0349-6

57. Yamada T., Hayase T., Miyauchi S. et al., Numerical analysis of the effect of trabeculae carneae models on blood fl ow in a left ventricle model constructed from magnetic resonance images. Journal of Biomechanical Science and Engineering. 2018;13:00517–00597. DOI: 10.1299/jbse.17-00597

58. Miyauchi S., Yamada T., Hosoi K., Hayase T., Funamoto K. Numerical analysis of the blood fl ow in the left ventricle with internal structures: Effect of trabeculae carneae models and atrial fi brillation. AIP Adv. 2019;9:105209. DOI: 10.1063/1.5124730

59. Gannon M.P., Saba S.G., Hirsh B.J. et al. Three-dimensional echocardiography demonstrates a skewered left ventricular thrombus in a patient with a heart transplant. Echocardiography. 2018;35(12):2117– 2120. DOI: 10.1111/echo.14158

60. Чухловина М.Л., Алексеева Т.М., Ефремова Е.С. Этиологическая структура и коморбидность кардиоэмболического инсульта. Артериальная гипертензия. 2021;27(1):110–116.


Рецензия

Для цитирования:


Милюков В.Е., Брюханов В.А., Нгуен К.К. Анатомические факторы внутрисердечного тромбообразования в патогенезе кардиоэмболического инсульта. Клиническая медицина. 2023;101(9-10):441-448. https://doi.org/10.30629/0023-2149-2023-101-9-10-441-448

For citation:


Milyukov V.E., Bryukhanov V.A., Nguyen С.С. Anatomical factors of intracavitary thrombus formation in the pathogenesis of cardioembolic stroke. Clinical Medicine (Russian Journal). 2023;101(9-10):441-448. (In Russ.) https://doi.org/10.30629/0023-2149-2023-101-9-10-441-448

Просмотров: 517


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)