Preview

Clinical Medicine (Russian Journal)

Advanced search

Epigenetic signals in heart failure: new opportunities for early diagnosis and eff ective therapy

https://doi.org/10.30629/0023-2149-2023-101-7-8-353-360

Abstract

Heart failure (HF) is a severe clinical syndrome associated with signifi cant morbidity and mortality. According to the mechanisms of HF development, it is divided into two main clinical forms: heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF). While eff ective and specifi c treatment methods have been developed for HFrEF, leading to a decrease in the prevalence of this form of HF in recent years, the prognosis for patients with HFpEF remains unfavourable, and eff ective treatment methods do not yet exist. Therefore, the identifi cation of new molecular targets and therapeutic approaches is considered an important task of modern medicine. Data obtained in this fi eld have revealed the key involvement of epigenetic signals in the regulation of transcriptional programs underlying the development of HFpEF, which has contributed to the development of selective epigenetic drugs capable of reversing transcriptional changes and thus delaying or preventing the progression of HFpEF. Further thorough investigation of individual epigenetic landscapes may provide opportunities in the future for the development of personalized epigenetic biomarkers and treatment methods for HFpEF. The aim of this review is to consider the role of epigenetic processing, as well as its diagnostic and therapeutic possibilities in HFpEF.

About the Authors

K. A. Aitbaev
Scientifi c and Research Institute of Molecular Biology and Medicine
Kyrgyzstan

720040, Bishkek



I. T. Murkamilov
Kyrgyz State Medical Academy named after I.K. Akhunbaev; Kyrgyz-Russian Slavic University named after the First President of the Russian Federation B.N. Yeltsin
Kyrgyzstan

720020, Bishkek; 720000, Bishkek



V. V. Fomin
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)
Russian Federation

119991, Moscow



I. O. Kudaibergenova
Kyrgyz State Medical Academy named after I.K. Akhunbaev
Kyrgyzstan

720020, Bishkek



F. A. Yusupov
Osh State University
Kyrgyzstan

723500, Osh



Z. A. Aidarov
Kyrgyz State Medical Academy named after I.K. Akhunbaev
Kyrgyzstan

720020, Bishkek



References

1. Paulus W.J. Culprit mechanism(s) for exercise intolerance in heart failure with normal ejection fraction. J. Am. Coll. Cardiol. 2010;56:864–866. DOI: 10.1016/j.jacc.2010.04.041

2. Dunlay S.M., Roger V.L., Redfield M.M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 2017;14:591–602. DOI: 10.1038/nrcardio.2017.65

3. Leggat J., Bidault G., Vidal-Puig A. Lipotoxicity: a driver of heart failure with preserved ejection fraction? Clin. Sci. 2021;135:2265–2283. DOI: 10.1042/CS20210127

4. Wenzl F.A., Ambrosini S., Mohammed S. et al. Inflammation in metabolic cardiomyopathy. Front Cardiovasc. Med. 2021;8:742178. DOI: 10.3389/fcvm.2021.742178

5. Jackson A.M., Rorth R., Liu J. et al. Diabetes and prediabetes in patients with heart failure and preserved ejection fraction. Eur. J. Heart Fail. 2021;DOI: 10.1002/ejhf.2403

6. Borlaug B.A., Paulus W.J. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur. Heart J. 2011;32:670–679. DOI: 10.1093/eurheartj/ehq426

7. Borlaug B.A. The pathophysiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 2014;11:507–515. DOI: 10.1038/nrcardio.2014.83

8. Owan T.E., Hodge D.O., Herges R.M. et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N. Engl. J. Med. 2006;355:251–259. DOI: 10.1056/NEJMoa052256

9. Seferovic P.M., Vardas P., Jankowska E.A. et al. The Heart Failure Association Atlas: Heart Failure Epidemiology and Management Statistics 2019. Eur. J. Heart Fail. 2021;23:906–914. DOI: 10.1002/ejhf.2143

10. Savarese G., Lund L.H. Global public health burden of heart failure. Card. Fail. Rev. 2017;3:7–11. DOI: 10.15420/cfr.2016:25:2

11. Costantino S., Libby P., Kishore R. et al. Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. Eur. Heart J. 2018;39:4150–4158. DOI: 10.1093/eurheartj/ehx568

12. Aguilera O., Fernandez A.F., Munoz A., Fraga M.F. Epigenetics and environment: a complex relationship. J. Appl. Physiol. 2010;109:243–251. DOI: 10.1152/japplphysiol.00068.2010

13. Jawaid A., Jehle K.L., Mansuy I.M. Impact of parental exposure on off spring health in humans. Trends Genet. 2021;37:373–388. DOI: 10.1016/j.tig.2020.10.006

14. Costantino S., Mohammed S.A., Ambrosini S., Paneni F. Epigenetic processing in cardiometabolic disease. Atherosclerosis. 2019;281:150–158. DOI: 10.1016/j.atherosclerosis.2018.09.029

15. El-Osta A. Redox mediating epigenetic changes confer metabolic memories. Circ. Res. 2012;111:262–264. DOI: 10.1161/CIRCRESAHA.112.274936

16. Hamdani N., Costantino S., Mugge A. et al. Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies. Eur. Heart J. 2021;42:1940–1958. DOI: 10.1093/eurheartj/ehab197

17. Soler-Botija C., Galvez-Monton C., Bayes-Genis A. Epigenetic biomarkers in cardiovascular diseases. Front Genet. 2019;10:950. DOI: 10.3389/fgene.2019.00950

18. Berdasco M., Esteller M. Clinical epigenetics: seizing opportunities for translation. Nat. Rev. Genet. 2019;20:109–127. DOI: 10.1038/s41576-018-0074-2

19. Arora I., Tollefsbol T.O. Computational methods and next-generation sequencing approaches to analyze epigenetics data: profiling of methods and applications. Methods. 2021;187:92–103. DOI: 10.1016/j.ymeth.2020.09.008

20. Schiano C., Benincasa G., Franzese M. et al. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol. Ther. 2020;210:107514. DOI: 10.1016/j.pharmthera.2020.107514

21. Bain C.R., Ziemann M., Kaspi A. et al. DNA methylation patterns from peripheral blood separate coronary artery disease patients with and without heart failure. ESC Heart Fail. 2020;7:2468–2478. DOI: 10.1002/ehf2.12810

22. Meder B., Haas J., Sedaghat-Hamedani F. et al. Epigenome-wide association study identifies cardiac gene patterning and a novel class of biomarkers for heart failure. Circulation. 2017;136:1528–1544. DOI: 10.1161/CIRCULATIONAHA.117.027355

23. Glezeva N., Moran B., Collier P. et al. Targeted DNA methylation profiling of human cardiac tissue reveals novel epigenetic traits and gene deregulation across different heart failure patient subtypes. Circ. Heart Fail. 2019;12:e005765. DOI: 10.1161/CIRCHEARTFAILURE.118.005765

24. Sano S., Wang Y., Walsh K. Clonal hematopoiesis and its impact on cardiovascular disease. Circ. J. 2018;83:2–11. DOI: 10.1253/circj.CJ-18-0871

25. Dorsheimer L., Assmus B., Rasper T. et al. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol. 2019;4:25–33. DOI: 10.1001/jamacardio.2018.3965

26. Eaton C., Raffield L.M., Bick A. et al. Abstract 11: prospective association of Tet2 mediated clonal hematoopoiesis and heart failure and its subtypes in postmenopausal women. Circulation. 2020;141:(1):A11–A111.

27. Sano S., Wang Y., Yura Y. et al. JAK2 (V617F)-mediated clonal hematopoiesis accelerates pathological remodeling in murine heart failure. JACC Basic Transl. Sci. 2019;4:684–697. DOI: 10.1016/j.jacbts.2019.05.013

28. Donekal S., Venkatesh B.A., Liu Y.C. et al. Interstitial fibrosis, left ventricular remodeling, and myocardial mechanical behavior in a population-based multiethnic cohort: the Multi-Ethnic Study of Atherosclerosis (MESA) study. Circ. Cardiovasc. Imaging. 2014;7:292–302. DOI: 10.1161/CIRCIMAGING.113.001073

29. Duprez D.A., Gross M.D., Kizer J.R. et al. Predictive value of collagen biomarkers for heart failure with and without preserved ejection fraction: MESA (Multi-Ethnic Study of Atherosclerosis). J. Am. Heart Assoc. 2018;7:e007885. DOI: 10.1161/JAHA.117.007885

30. Gabel S.A., Walker V.R., London R.E. et al. Estrogen receptor beta mediates gender differences in ischemia/reperfusion injury. J. Mol. Cell Cardiol. 2005;38:289–297. DOI: 10.1016/j.yjmcc.2004.11.013

31. Schiattarella G.G., Rodolico D., Hill J.A. Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovasc. Res. 2021;117:423–434. DOI: 10.1093/cvr/cvaa217

32. Cetin M., Kocaman S.A., Durakoglugil M.E. et al. Effect of epicardial adipose tissue on diastolic functions and left atrial dimension in untreated hypertensive patients with normal systolic function. J. Cardiol. 2013;61:359–364. DOI: 10.1016/j.jjcc.2012.12.015

33. Nerlekar N., Muthalaly R.G., Wong N. et al. Association of volumetric epicardial adipose tissue quantification and cardiac structure and function. J. Am. Heart. Assoc. 2018;7:e009975.DOI: 10.1161/JAHA.118.009975

34. Oikonomou E.K., Antoniades C. The role of adipose tissue in cardio-vascular health and disease. Nat. Rev. Cardiol. 2019;16:83–99. DOI: 10.1038/s41569-018-0097-6

35. Crujeiras A.B., Diaz-Lagares A., Moreno-Navarrete J.M. et al. Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects. Transl. Res. 2016;178:13–24. DOI: 10.1016/j.trsl.2016.07.002

36. Kaneda R., Takada S., Yamashita Y. et al. Genome-wide histone methylation profile for heart failure. Genes Cells. 2009;14:69–77. DOI: 10.1111/j.1365-2443.2008.01252.x

37. Wei J., Joshi S., Speransky S. et al. Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface. JCI Insight. 2017;2:e91068. DOI: 10.1172/jci.insight.91068

38. Gilsbach R., Schwaderer M., Preissl S. et al. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat. Commun. 2018;9:391. DOI: 10.1038/s41467-017-02762-z

39. Rahier J.F., Druez A., Faugeras L. et al. Circulating nucleosomes as new blood-based biomarkers for detection of colorectal cancer. Clin. Epigenetics. 2017;9:53. DOI: 10.1186/s13148-017-0351-5

40. Watson C.J., Gupta S.K., O’Connell E. et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur. J. Heart Fail. 2015;17:405–415. DOI: 10.1002/ejhf.244

41. Chen F., Yang J., Li Y., Wang H. Circulating microRNAs as novel biomarkers for heart failure. Hellenic J. Cardiol. 2018;59:209–214. DOI: 10.1016/j.hjc.2017.10.002

42. Rech M., Barandiaran Aizpurua A., van Empel V. et al. Pathophysiological understanding of HFpEF: microRNAs as part of the puzzle. Cardiovasc. Res. 2018;114:782–793. DOI: 10.1093/cvr/cvy049

43. Costantino S., Paneni F., Cosentino F. Targeting chromatin remodeling to prevent cardiovascular disease in diabetes. Curr. Pharm. Biotechnol. 2015;16:531–543. DOI: 10.2174/138920101606150407113644

44. Fraineau S., Palii C.G., Allan D.S., Brand M. Epigenetic regulation of endothelial-cell-mediated vascular repair. FEBS J. 2015;282:1605–1629. DOI: 10.1111/febs.13183

45. Yekehtaz H., Farokhnia M., Akhondzadeh S. Cardiovascular considerations in antidepressant therapy: an evidence-based review. J. Tehran. Heart Cent. 2013;8:169–176.

46. Lyle M.A., Alabdaljabar M.S., Han Y.S., Brozovich F.V. The vasculature in HFpEF vs HFrEF: differences in contractile protein expression produce distinct phenotypes. Heliyon. 2020;6:e03129. DOI: 10.1016/j.heliyon.2019.e03129

47. Severs N.J. Gap junction remodeling in heart failure. J. Card. Fail. 2002;8:S293–299. DOI: 10.1054/jcaf.2002.129255.

48. Ooi J.Y., Tuano N.K., Rafehi H. et al. HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes. Epigenetics. 2015;10:418–430. DOI: 10.1080/15592294.2015.1024406

49. Lyu X., Hu M., Peng J. et al. HDAC inhibitors as antifibrotic drugs in cardiac and pulmonary fibrosis. Ther. Adv. Chronic Dis. 2019;10:2040622319862697. DOI: 10.1177/2040622319862697

50. Napoli C., Bontempo P., Palmieri V.et al. Epigenetic therapies for heart failure: current insights and future potential. Vasc. Health Risk Manag. 2021;17:247–254. DOI: 10.2147/VHRM.S287082

51. Kao Y-H., Cheng C-C., Chen Y-C. et al. Hydralazine-induced promoter de-methylation enhances sarcoplasmic reticulum Ca2+ - ATPase and calcium homeostasis in cardiac myocytes. Lab. Investig. 2011;91:1291–1297. DOI: 10.1038/labinvest.2011.92

52. Lee C., Kim B.G., Kim J.H. et al. Sodium butyrate inhibits the NF-kappa B signaling pathway and histone deacetylation, and attenuates experimental colitis in an IL-10 independent manner. Int. Immunopharmacol. 2017;51:47–56. DOI: 10.1016/j.intimp.2017.07.023

53. Gordon J.W., Shaw J.A., Kirshenbaum L.A. Multiple facets of NF-κB in the heart. Circ. Res. 2011;108:1122–1132. DOI: 10.1161/CIRCRESAHA.110.226928

54. Gillette T.G., Hill J.A. Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ. Res. 2015;116:1245–1253. DOI: 10.1161/CIRCRESAHA.116.303630

55. Khurana I., Maxwell S., Royce S. et al. SAHA attenuates Takotsubo-like myocardial injury by targeting an epigenetic Ac/Dc axis. Signal Transduct. Target Ther. 2021;6:159. DOI: 10.1038/s41392-021-00546-y

56. Duan Q., McMahon S., Anand P. et al. BET bromodomain inhibition suppresses innate inflammatory and profibrotic transcriptional networks in heart failure. Sci. Transl. Med. 2017;9:eaah5084. DOI: 10.1126/scitranslmed.aah5084

57. Jahagirdar R., Zhang H., Azhar S. et al. A novel BET bromodomain inhibitor, RVX-208, shows reduction of atherosclerosis in hyperlipidemic ApoE deficient mice. Atherosclerosis. 2014;236:91–100. DOI: 10.1016/j.atherosclerosis.2014.06.008

58. Tsujikawa L.M., Fu L., Das S. et al. Apabetalone (RVX-208) reduces vascular inflammation in vitro and in CVD patients by a BET-dependent epigenetic mechanism. Clin. Epigenet. 2019;11:102. DOI: 10.1186/s13148-019-0696-z

59. Mohammed S.A., Albiero M., Ambrosini S. et al. The BET protein inhibitor apabetalone rescues diabetes-induced impairment of an-giogenic response by epigenetic regulation of thrombospondin-1. Antioxid. Redox Signal. 2021. DOI: 10.1089/ars.2021.0127. [Online ahead of print].

60. Ray K.K., Nicholls S.J., Buhr K.A. et al. Effect of apabetalone added to standard therapy on major adverse cardiovascular events in patients with recent acute coronary syndrome and type 2 diabetes: a randomized clinical trial. JAMA. 2020;323:1565–1573. DOI: 10.1001/jama.2020.3308

61. Landmesser U., Poller W., Tsimikas S. et al. From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases. Eur. Heart J. 2020;41:3884–3899. DOI: 10.1093/eurheartj/ehaa229

62. Batkai S., Genschel C., Viereck J. et al. CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. Eur. Heart J. 2021;42:192–201. DOI: 10.1093/eurheartj/ehaa791

63. Taubel J., Hauke W., Rump S. et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-hu-man Phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J. 2021;42:178–188. DOI: 10.1093/eurheartj/ehaa898

64. Ly A., Ishiguro L., Kim D. et al. Maternal folic acid supplementation modulates DNA methylation and gene expression in the rat offspring in a gestation period-dependent and organ-specific manner. J. Nutr. Biochem. 2016;33:103–110. DOI: 10.1016/j.jnutbio.2016.03.018

65. Nur S.M, Rath S., Ahmad V. et al. Nutritive vitamins as epidrugs. Crit. Rev. Food Sci. Nutr. 2021;61:1–13. DOI: 10.1080/10408398.2020.1712674

66. Zhang L., Ji H., Huang Y. et al. Association of BAX hypermethylation with coronary heart disease is specific to individuals aged over Medicine. 2019;98:e14130. DOI: 10.1097/MD.0000000000014130

67. Jones S.P., Greer J.J., van Haperen R. et al. Endothelial nitric oxide synthase overexpression attenuates congestive heart failure in mice. Proc. Natl. Acad. Sci. USA. 2003;100:4891–4896. DOI: 10.1073/pnas.0837428100

68. D’Amario D., Migliaro S., Borovac J.A. et al. Microvascular dysfunction in heart failure with preserved ejection fraction. Front Physiol. 2019;10:1347. DOI: 10.3389/fphys.2019.01347

69. Trum M., Wagner S., Maier L.S., Mustroph J. CaMKII and GLUT1 in heart failure and the role of gliflozins. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866:165729. DOI: 10.1016/j.bbadis.2020.165729

70. Tavazzi L., Maggioni A.P., Marchioli R. et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1223–1230. DOI: 10.1016/S0140-6736(08)61239-8

71. Kjekshus J., Apetrei E., Barrios V. et al. Rosuvastatin in older patients with systolic heart failure. N. Engl. J. Med. 2007;357:2248–2261. DOI: 10.1056/NEJMoa0706201

72. Bhatnagar A. Environmental cardiology: studying mechanistic links between pollution and heart disease. Circ. Res. 2006;99:692–705. DOI: 10.1161/01.RES.0000243586.99701

73.


Review

For citations:


Aitbaev K.A., Murkamilov I.T., Fomin V.V., Kudaibergenova I.O., Yusupov F.A., Aidarov Z.A. Epigenetic signals in heart failure: new opportunities for early diagnosis and eff ective therapy. Clinical Medicine (Russian Journal). 2023;101(7-8):353-360. (In Russ.) https://doi.org/10.30629/0023-2149-2023-101-7-8-353-360

Views: 450


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)