Preview

Клиническая медицина

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Васкулопатия у пациентов с COVID-19 тяжелого течения

https://doi.org/10.30629/0023-2149-2020-98-5-325-333

Полный текст:

Аннотация

Представлен обзор литературы, посвященной одному из проявлений коронавирусной инфекции (corona virus disease-19, COVID-19) тяжелого течения, к которым относят патологические изменения в сосудах микроциркуляции, что можно рассматривать в рамках системного васкулита (СВ) или васкулопатии. Поскольку в настоящее время универсальной стратегии лечения COVID-19 не разработано, расшифровка патоморфологии и патогенеза заболевания может стать основанием для поиска эффективных методов лечения. Наряду с тяжелым прогрессирующим поражением легких у пациентов с COVID-19 может присутствовать полиорганная симптоматика, напоминающая СВ. Получены доказательства при COVID-19 тяжелого течения участия системы комплемента с отложениями в сосудах микроциркуляции легких и других органов C5b-9 и C4d, свидетельствующего об активации альтернативного и лектинового путей, что сопровождается повреждением эндотелиальных клеток, каскадом воспалительных реакций и тромбофилией. Это дает основания рассматривать ряд стратегических направлений в лечении COVID-19. Поскольку при различных тромботических микроангиопатиях эффективна стратегия, направленная на систему комплемента, появляются основания обсуждать перспективы применения для лечения COVID-19 тяжелого течения ингибиторов С5-компонента комплемента экулизумаба, равулизумаба и селективного ингибитора рецептора С5аR1 авакопана, в клинических исследованиях доказавшего свою эффективность при АНЦА-СВ как альтернатива глюкокортикоидам. Тяжелое течение COVID-19 осложняется иммунопатологической реакцией с высвобождением широкого спектра провоспалительных цитокинов и хемокинов, что ассоциируется с неблагоприятным прогнозом. Так как для лечения синдрома высвобождения цитокинов при различных состояниях эффективны ингибиторы интерлейкина-6, у пациентов с тяжелым/катастрофическим COVID-19 применяют тоцилизумаб и сарилумаб. Возможная эффективность при COVID-19 ингибитора JAK барицитиниба обусловлена как его противовоспалительной активностью, так и способностью подавлять раннюю стадию репликации коронавируса. COVID-19 тяжелого течения может сопровождаться распространенной сосудистой патологией прежде всего микроциркуляторного русла и тромбофилией, что следует учитывать при планировании новых стратегий лечения.

Об авторах

Т. В. Бекетова
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

Бекетова Татьяна Валентиновна — д-р мед. наук, врач-ревматолог, ведущий научный сотрудник лаборатории микроциркуляции и воспаления

 115522, Москва

 



Е. В. Насонов
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия
115522, Москва


Список литературы

1. Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020;58(2):123–32. doi: 10.14412/1995-4484-2020- 123-132.

2. Boraschi P. COVID-19 Pulmonary Involvement: Is Really an Interstitial Pneumonia? Acad. Radiol. 2020 Apr. 15. pii: S1076- 6332(20)30202-6. doi:10.1016/j.acra.2020.04.010.

3. Zhang W., Zhao Y., Zhang F., Wang Q., Li T., Liu Z. et al. The use of anti-infl ammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin. Immunol. 2020;214:108393. doi:10.1016/j.clim.2020.108393.

4. Zhang Y., Xiao M., Zhang S., Xia P., Cao W., Jiang W. et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N. Engl. J. Med. 2020;382(17):e38. doi:10.1056/NEJMc2007575.

5. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140- 6736(20)30183-5.

6. Pan Y., Guan H., Zhou S., Wang Y., Li Q., Zhu T. et al. Initial CT fi ndings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur. Radiol. 2020 Feb 13. doi: 10.1007/s00330-020-06731-x.

7. Shi H., Han X., Jiang N., Cao Y., Alwalid O., Gu J., Fan Y., Zheng C. Radiological fi ndings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect. Dis. 2020;20(4):425–434. doi:10.1016/S1473-3099(20)30086-4.

8. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y. et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020 Mar 12. pii: ciaa248. doi: 10.1093/cid/ ciaa248.

9. Zhang J.J., Dong X., Cao Y.Y., Yuan Y.D., Yang Y.B., Yan Y.Q. et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020 Feb 19. doi: 10.1111/all.14238.

10. Wu D., Yang X.O. Th17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor fedratinib. J. Microb. Immun. Infect. 2020. doi: 1016/j.jmii.2020.03.005.

11. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. et al. Pathological fi ndings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420–422. doi: 10.1016/S2213-2600(20)30076-X.

12. Zhou Y., Fu B., Zheng X. et al. Abberant pathogenic GM-CSF+T cells and infl ammatory CD14+CD16+ monocyte in severe pulmonary syndrome patients of a new coronavirus. bioRxiv. 2020. doi: 10.1101/2020.02.12.945576.

13. Magro C., Mulvey J.J., Berlin D. et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of fi ve cases. Transl. Res. 2020;(20):1931–5244. doi:10.1016/j.trsl.2020.04.007.

14. Gao Y., Li T., Han M., Li X., Wu D., Xu Y. et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J. Med. Virol. 2020 Mar 17. doi: 10.1002/jmv.25770.

15. Wan S., Yi Q., Fan S., Lv J., Zhang X., Guo L. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). Medrxiv. 2020. doi: 10.1101/2020.02.10.20021832.

16. Chen X., Zhao B., Qu Y., Chen Y., Xiong J., Feng Y. et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin. Infect. Dis. 2020 Apr

17. pii: ciaa449. doi:10.1093/cid/ciaa449. 17. Liu T., Zhang J., Yang Y. et al. The potential role of interleukin 6 in monitoring severe case of coronavirus disesase. MedRxiv. 2020. doi: 10.1101/2020/03/01/20029769.

18. Gao Y., Li T., Han M. et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J. Med. Virol. 2020 Mar 17. doi: 10.1002/jmv.25770. 19. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020 Feb

19. doi: 10.1111/jth.14768.

20. Han H., Yang L., Liu R., Liu F., Wu K.L., Li J. et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin. Chem. Lab. Med. 2020 Mar 16. pii: /j/cclm.aheadof-print/cclm-2020-0188/cclm-2020-0188.xml. doi:10.1515/ cclm-2020-0188.

21. Casey K., Iteen A., Nicolini R. Auten J. COVID-19 pneumonia with hemoptysis: Acute segmental pulmonary emboli associated with novel coronavirus infection. Am. J. Emerg. Med. 2020 Apr 8. pii: S0735-6757(20)30239-4. doi:10.1016/j.ajem.2020.04.011.

22. Caruso D., Zerunian M., Polici M., Pucciarelli F., Polidori T., Rucci C. et al. Features of COVID-19 in Rome, Italy. Radiology. 2020;201237. doi: 10.1148/radiol.2020201237.

23. Leonard-Lorant I., Delabranche X., Severac F., Helms J., Pauzet C., Collange O. et al. Acute pulmonary embolism in COVID-19 patients on ct angiography and relationship to D-dimer levels. Radiology. 2020;201561. doi: 10.1148/radiol.2020201561.

24. Grillet F., Behr J., Calame P., Aubry S., Delabrousse E. Acute pulmonary embolism associated with COVID-19 pneumonia detected by pulmonary CT angiography. Radiology. 2020;201544. doi: 10.1148/ radiol.2020201544.

25. Klok F.A., Kruip M.J.H.A., van der Meer N.J.M., Arbous M.S., Gommers D.A.M.P.J., Kant K.M. et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020 Apr 10. pii: S0049-3848(20)30120-1. doi:10.1016/j.thromres.2020.04.013.

26. Bellosta R., Luzzani L., Natalini G., Pegorer M.A., Attisani L., Cossu L.G. et al. Acute limb ischemia in patients with COVID-19 pneumonia. J. Vasc. Surg. 2020 Apr 29. doi: 10.1016/j.jvs.2020.04.483. Epub ahead of print. PMCID: PMC7188654.

27. Leisman D.E., Deutschman C.S., Legrand M. Facing COVID-19 in the ICU: vascular dysfunction, thrombosis, and dysregulated infl ammation. Intensive Care Med. 2020 Apr 28. doi: 10.1007/s00134-020- 06059-6.

28. Zheng Y.Y., Ma Y.T., Zhang J.Y., Xie X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020 May;17(5):259–260. doi: 10.1038/s41569-020-0360-5.

29. Gianotti R., Veraldi S., Recalcati S., Cusini M., Ghislanzoni M., Boggio F., Fox L.P. Cutaneous Clinico-Pathological Findings in three COVID-19-Positive Patients Observed in the Metropolitan Area of Milan, Italy. Acta Derm. Venereol. 2020 Apr 21. doi: 10.2340/00015555-3490.

30. Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X. et al.; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020 Feb 28. doi: 10.1056/NEJMoa2002032.

31. Recalcati S. Cutaneous manifestations in COVID-19: a fi rst perspective. J. Eur. Acad. Dermatol. Venereol. 2020 Mar 26. doi: 10.1111/ jdv.16387.

32. Galván Casas C., Català A., Carretero Hernández G., Rodríguez-Jiménez P., Fernández Nieto D., Rodríguez-Villa Lario A. et al. Clas si fi cation of the cutaneous manifestations of COVID-19: a rapidprospective nationwide consensus study in Spain with 375 cases. Br.J. Dermatol. 2020 Apr 29. doi: 10.1111/bjd.19163.

33. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q. et al. NeurologicManifestations of Hospitalized Patients With Coronavirus Disease2019 in Wuhan, China. JAMA Neurol. 2020 Apr 10. doi: 10.1001/jamaneurol.2020.1127.

34. Giacomelli A., Pezzati L., Conti F., Bernacchia D., Siano M., Oreni L. et al. Self-reported olfactory and taste disorders in SARSCoV-2 patients: a cross-sectional study. Clin. Infect. Dis. 2020 Mar26. pii: ciaa330. doi: 10.1093/cid/ciaa330.

35. Su H., Yang M., Wan C., Yi L.X., Tang F., Zhu H.Y. et al. Renalhistopathological analysis of 26 postmortem fi ndings of patientswith COVID-19 in China. Kidney Int. 2020 Apr 9. pii: S0085-2538(20)30369-0. doi:10.1016/j.kint.2020.04.003.

36. Науменко ЖК, Черняк АВ, Неклюдова ГВ, Чучалин АГ.Вентиляционно-перфузионное отношение. Практическая пульмонология. 2018;4:86–90.

37. Yao X.H., Li T.Y., He Z.C., Ping Y.F., Liu H.W., Yu S.C. et al. Apathological report of three COVID-19 cases by minimally invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020;49(0):E009. doi:10.3760/cma.j.cn112151-20200312-00193.

38. Mastellos D.C., Ricklin D., Lambris J.D. Clinical promise of next-generation complement therapeutics. Nat. Rev. Drug. Discov. 2019;18(9):707–29. doi:10.1038/s41573-019-0031-6.

39. Tinti M.G., Carnevale V., Inglese M., Molinaro F., Bernal M., Migliore A., De Cata A. Eculizumab in refractory catastrophic antiphospholipid syndrome: a case report and systematic review of the literature. Clin. Exp. Med. 2019;19(3):281–288. doi: 10.1007/s10238-019-00565-8.

40. Legendre C.M., Licht C., Muus P., Greenbaum L.A., Babu S., Bedrosian C. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 2013;368(23):2169–2181. doi: 10.1056/NEJMoa1208981.

41. Licht C., Greenbaum L.A., Muus P., Babu S., Bedrosian C.L., Cohen D.J. et al. Effi cacy and safety of eculizumab in atypical hemolytic uremic syndrome from 2-year extensions of phase 2 studies.Kidney Int. 2015;87(5):1061–1073. doi: 10.1038/ki.2014.423.

42. Greenbaum L.A., Fila M., Ardissino G., Al-Akash S.I., Evans J.,Henning P. et al. Eculizumab is a safe and eff ective treatment in pediatric patients with atypical hemolytic uremic syndrome. Kidney Int. 2016;89(3):701–11. doi: 10.1016/j.kint.2015.11.026.

43. Fakhouri F., Hourmant M., Campistol J.M., Cataland S.R., Espinosa M., Gaber A.O. et al. Terminal Complement Inhibitor Eculizumab in Adult Patients With Atypical Hemolytic Uremic Syndrome: A Single-Arm, Open-Label Trial. Am J. Kidney Dis. 2016;68(1):84–93. doi: 10.1053/j.ajkd.2015.12.034.

44. McKeage K. Ravulizumab: First Global Approval. Drugs. 2019;79(3):347–352. doi: 10.1007/s40265-019-01068-2.

45. McNamara L.A., Topaz N., Wang X., Hariri S., Fox L., MacNeil J.R. High Risk for Invasive Meningococcal Disease Among Patients Receiving Eculizumab (Soliris) Despite Receipt of Meningococcal Vaccine. MMWR Morb. Mortal Wkly Rep. 2017;66(27):734–7. doi:10.15585/mmwr.mm6627e1.

46. Ito S., Hidaka Y., Inoue N., Kaname S., Kato H., Matsumoto M. et al. Safety and eff ectiveness of eculizumab for pediatric patients with atypical hemolytic-uremic syndrome in Japan: interim analysis of post-marketing surveillance. Clin. Exp. Nephrol. 2019;23(1):112–121. doi: 10.1007/s10157-018-1610-2.

47. Jayne D.R.W., Bruchfeld A.N., Harper L., Schaier M., Venning M.C., Hamilton P. et al.; CLEAR Study Group. Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis. J. Am Soc. Nephrol. 2017;28(9):2756–67. doi:10.1681/ASN.2016111179.

48. Merkel P.A., Niles J., Jimenez R. et al. A randomized clinical trial of CCX168, an orally administered C5aR inhibitor for treatment of patients with ANCA-associated vasculitis. Amer. Coll. Rheumatol. 2016;978.

49. Merkel P.A., Jayne D.R., Wang C., Hillson J., Bekker P. Evaluation of the safety and effi cacy of avacopan, a c5a receptor inhibitor, in patients with antineutrophil cytoplasmic antibody-associated vasculitis treated concomitantly with rituximab or cyclophosphamide/azathioprine: protocol for a randomized, double-blind, active-controlled, phase 3 trial. JMIR Res. Protoc. 2020;9(4):e16664. doi:10.2196/16664.

50. Diurno F., Numis F.G., Porta G., Cirillo F., Maddaluno S., Ragozzino A. et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur. Rev. Med. Pharmacol. Sci. 2020;24(7):4040–4047. doi:10.26355/eurrev_202004_20875.

51. Shagdarsuren E., Wellner M., Braesen J.H. Complement activation in angiotensin II-induced organ damage. Circ. Res. 2005;97:716–724.

52. Phan T. Novel coronavirus: From discovery to clinical diagnostics. Infect. Genet. Evol. 2020 Apr;79. doi: 10.1016/j.meegid.2020.104211.

53. Zhao Y., Zhao Z., Wang Y., Zhou Y., Ma Y., Zuo W. Single-cell RNA expression profi ling of ACE2, the putative receptor of Wuhan 2019-nCov. Biorxiv. 2020;2020(1):26.919985. doi:10.1101/2020.01.26.919985.

54. Rodrigues Prestes T.R., Rocha N.P., Miranda A.S., Teixeira A.L., Simoes-E-Silva A.C. The Anti-Infl ammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and Clinical Research. Curr. Drug. Targets. 2017;18(11):1301–1313. doi: 10.2174/1389450117666160727142401.

55. Van de Veerdonk F., Netea M.G., van Deuren M., van der Meer J.W., de Mast Q, Bruggemann RJ, van der Hoeven H. Kinins and Cytokines in COVID-19: A Comprehensive Pathophysiological Approach. Preprints. 2020;2020040023. doi: 10.20944/preprints202004.0023.v1.

56. Srivastava P., Badhwar S., Chandran D.S., Jaryal A.K., Jyotsna V.P., Deepak K.K. Imbalance between Angiotensin II — Angiotensin (1–7) system is associated with vascular endothelial dysfunction and infl ammation in type 2 diabetes with newly diagnosed hypertension. Diabetes Metab. Syndr. 2019;13(3):2061–8. doi: 10.1016/j.dsx.2019.04.042.

57. Hanff T.C., Harhay M.O., Brown T.S., Cohen J.B., Mohareb A.M. Is There an Association Between COVID-19 Mortality and the Renin-Angiotensin System — a Call for Epidemiologic Investigations. Clinical Infectious Diseases. 2020. PMID 32215613 doi:10.1093/cid/ciaa329.

58. Cheng H., Wang Y., Wang G.Q. Organ-protective eff ect of angiotensin-converting enzyme 2 and its eff ect on the prognosis of COVID-19. J. Med. Virol. 2020 Mar 27. doi: 10.1002/jmv.25785.

59. Zhou Y., Hou Y., Shen J., Huang Y., Martin W., Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell. Discov. 2020;6:14. doi: 10.1038/s41421-020-0153-3.

60. Liu C., Ma Y., Su Z. et al. Meta-Analysis of Preclinical Studies of Fibrinolytic Therapy for Acute Lung Injury. Front Immunol. 2018;9:1898. doi:10.3389/fi mmu.2018.01898.

61. Moore H.B., Barrett C.D., Moore E.E., McIntyre R.C., Moore P.K., Talmor D.S., Moore F.A., Yaff e M.B. Is there a role for tissue plas minogen activator (tPA) as a novel treatment for refractory COVID-19 associated acute respiratory distress syndrome (ARDS)? J. Trauma Acute Care Surg. 2020 Mar 20. doi: 10.1097/TA.0000000000002694.

62. Choudhury R., Barrett C.D., Moore H.B., Moore E.E., McIntyre R.C., Moore P.K. et al. Salvage use of tissue plasminogen activator (tPA) in the setting of acute respiratory distress syndrome (ARDS) due to COVID-19 in the USA: a Markov decision analysis. World J. Emerg. Surg. 2020;15(1):29. doi:10.1186/s13017-020-00305-4.

63. Wang J., Hajizadeh N., Moore E.E., McIntyre R.C., Moore P.K., Veress L.A. et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): A Case Series. J. Thromb. Haemost. 2020 Apr 8. doi: 10.1111/jth.14828.

64. Wong C.K., Lam C.W., Wu A.K., Ip W.K., Lee N.L., Chan I.H. et al. Plasma infl ammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 2004;136(1):95–103.

65. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020. doi: 10.1016/S0140-6736(20)30628-0.

66. Насонов Е.Л., Лила А.М. Ингибиция интерлейкина 6 при иммуновоспалительных ревматических заболеваниях: достижения, перспективы и надежды. Научно-практическая ревматология. 2017;55(6):590–9. https://doi.org/10.14412/1995-4484-2017-590-599.

67. Shimabukuro-Vornhagen A., Gödel P., Subklewe M., Stemmler H.J., Schlößer H.A., Schlaak M. Et al. Cytokine release syndrome. J. Immunother. Cancer. 2018;6(1):56. doi:10.1186/s40425-018-0343-916.

68. Behrens E.M., Koretzky G.A. Review: Cytokine Storm Syndrome: Looking Toward the Precision Medicine Era. Arthritis Rheum. 2017;69(6):1135–1143. doi: 10.1002/art.40071.

69. Yildiz H., Neste E.V.D., Defour J.P., Danse E., Yombi J.C. Adult haemophagocytic lymphohistiocytosis: a review. Qjm. Mon. J. Assoc. Physicians. 2020. doi: 10.1093/qjmed/hcaa011.

70. Conti P., Ronconi G., Caraff a A., Gallenga C.E., Ross R., Frydas I., Kritas S.K. Induction of pro-infl ammatory cytokines (IL-1 and IL6) and lung infl ammation by Coronavirus-19 (COVI-19 or SARSCoV-2): anti-infl ammatory strategies. J. Biol. Regul. Homeost. Agents. 2020;34(2). pii: 1. doi: 10.23812/CONTI-E.

71. Harigai M., Tsutsumino M., Takada H., Nagasaka K. Molecular targeted therapies for microscopic polyangiitis and granulomatosis with polyangiitis. Korean J. Intern. Med. 2019;34(3):492–503. doi: 10.3904/kjim.2018.366.

72. Tisoncik J.R., Korth M.J., Simmons C.P., Farrar J., Martin T.R., Katze M.G. Into the eye of the cytokine storm. Microbiol. Mol. Biology Rev. Mmbr. 2012;76:16–32. doi: 10.1128/mmbr.05015-11.

73. Misra D.P., Ahmed S., Agarwal V. Is biological therapy in systemic sclerosis the answer? Rheumatol. Int. 2020;40(5):679–694. doi: 10.1007/s00296-020-04515-6.

74. Xu X., Han M., Li T., Sun W., Wang D., Fu B. et al. Eff ective treatment of severe COVID-19 patients with tocilizumab. China Xiv.

75. Насонов Е.Л., Лила А.М. Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно-практическая ревматология. 2019;57(1):8– 16. https://doi.org/10.14412/1995-4484-2019-8-16.

76. You H., Xu D., Zhao J., Li J., Wang Q., Tian X. et al. JAK inhibitors: prospects in connective tissue diseases. Clin. Rev. Allergy Immunol. 2020 Mar 28. doi: 10.1007/s12016-020-08786-6.

77. Zhang H., Watanabe R., Berry G.J., Tian L., Goronzy J.J., Weyand C.M. Inhibition of JAK-STAT Signaling Suppresses Pathogenic Immune Responses in Medium and Large Vessel Vasculitis. Circulation. 2018 May;137(18):1934–48. doi:10.1161/CIRCULATIONAHA.117.030423.

78. Richardson P., Griffi n I., Tucker C. et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395(10223):e30–31. doi: 10.1016/S0140-6736(20)30304-4.

79. Stebbing J., Phelan A., Griffi n I. et al. COVID-19: combining antiviral and anti-infl ammatory treatments. Lancet Infect. Dis. 2020 Feb 27. doi: 10.1016/S1473-3099(20)30132-8.

80. Cantini F., Niccoli L., Matarrese D., Nicastri E., Stobbione P., Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect. 2020 Apr 22. pii: S0163-4453(20)30228-0. doi: 10.1016/j.jinf.2020.04.017.

81. Monti S., Balduzzi S., Delvino P., Bellis E., Quadrelli V.S., Montecucco C. Clinical course of COVID-19 in a series of patients with chronic arthritis treated with immunosuppressive targeted therapies. Ann. Rheum. Dis. 2020 May;79(5):667–668. doi:10.1136/ annrheumdis-2020-217424.


Для цитирования:


Бекетова Т.В., Насонов Е.В. Васкулопатия у пациентов с COVID-19 тяжелого течения. Клиническая медицина. 2020;98(5):325-333. https://doi.org/10.30629/0023-2149-2020-98-5-325-333

For citation:


Beketova Т.V., Nasonov E.V. Vasculopathy in patients with severe COVID-19 infection. Clinical Medicine (Russian Journal). 2020;98(5):325-333. (In Russ.) https://doi.org/10.30629/0023-2149-2020-98-5-325-333

Просмотров: 138


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)