Preview

Клиническая медицина

Расширенный поиск

Промышленные поллютанты и эпигенетические факторы, ассоциированные с кардиомиопатиями

https://doi.org/10.30629/0023-2149-2023-101-1-18-25

Аннотация

В статье представлен обзор современных научных публикаций, посвященных отдельным аспектам молекулярно-генетического и эпигенетического патогенеза некоторых видов кардиомиопатий и представляющих интерес в том числе с точки зрения возможных ассоциаций с патофизиологическими механизмами воздействия поллютантов и промышленных ядов. Актуальность обозначенного подхода связана с тем, что указанные токсические агенты в настоящее время признаются рядом авторов как один из основных факторов, способствующих развитию сердечно- сосудистых заболеваний, и потребность в разносторонней теоретической базе для потенциальной разработки соответствующих средств профилактики и фармакологической коррекции становится все более и более осознанной. В фокусе повествования находятся функциональные цепи mTOR, фактора трансляции eIF4E и сплайсинг-регулятора RBM20, замыкающиеся на подверженные действию поллютантов регуляторные каскады ренин-ангиотензин-альдостероновой системы и гормональной системы трийодтиронина (Т3). Отдельное внимание уделено вопросам связи изменений профиля метилирования генома кардиомиоцитов с токсикодинамикой поллютантов и патогенезом кардиомиопатий.

Об авторах

Д. Н. Нечаев
ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства
Россия

Нечаев Денис Николаевич — ведущий аналитик

119121, Москва



А. А. Миролюбов
ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства
Россия

Миролюбов Александр Александрович — аналитик

119121, Москва



Д. С. Милоголова
ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства
Россия

Милоголова Дарья Сергеевна — аналитик

119121, Москва



К. Э. Попруга
ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства
Россия

Попруга Катерина Эдуардовна — аналитик 2-й категории

119121, Москва



А. Г. Титова
ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства
Россия

Титова Анастасия Германовна — аналитик 2-й категории

119121, Москва



А. Н. Ломов
ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства
Россия

Ломов Алексей Николаевич  — начальник отдела

119121, Москва



Список литературы

1. Chahwan R., Wontakal S.N., Roa S. The multidimensional nature of epigenetic information and its role in disease. Discov Med. 2011;11(58):233–43. PMID: 21447282

2. Sun Q., Ren X., Sun Z., Duan J. The critical role of epigenetic mechanism in PM2.5-induced cardiovascular diseases. Genes. Environ. 2021;43(1):47. DOI: 10.1186/s41021-021-00219-w

3. Konduracka E., Rostoff P. Links between chronic exposure to outdoor air pollution and cardiovascular diseases: a review. Environ. Chem. Lett. (2022). DOI: 10.1007/s10311-022-01450-9

4. Cox E.J., Marsh S.A. A systematic review of fetal genes as biomarkers of cardiac hypertrophy in rodent models of diabetes. PLoS One. 2014;9(3):e92903. DOI: 10.1371/journal.pone.0092903

5. Taegtmeyer H., Sen S., Vela D. Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann. N.-Y. Acad. Sci. 2010;1188:191–8. DOI: 10.1111/j.1749-6632.2009.05100.x

6. Zeitz M.J., Smyth J.W. Translating Translation to Mechanisms of Cardiac Hypertrophy. J. Cardiovasc. Dev. Dis. 2020;7(1):9. DOI: 10.3390/jcdd7010009

7. Perrino C., Naga Prasad S.V., Mao L., Noma T., Yan Z., Kim H.S., Smithies O., Rockman H.A. Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J. Clin. Invest. 2006;116(6):1547–60. DOI: 10.1172/JCI25397

8. Burke M.A., Chang S., Wakimoto H., Gorham J.M., Conner D.A., Christodoulou D.C., Parfenov M.G., DePalma S.R., Eminaga S., Konno T., Seidman J.G., Seidman C.E. Molecular profi ling of dilated cardiomyopathy that progresses to heart failure. JCI Insight. 2016;1(6):e86898. DOI: 10.1172/jci.insight.86898

9. Hannan R.D., Jenkins A., Jenkins A.K., Brandenburger Y. Cardiac hypertrophy: a matter of translation. Clin. Exp. Pharmacol. Physiol. 2003;30(8):517–27. DOI: 10.1046/j.1440-1681.2003.03873.x

10. Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. Global quantifi cation of mammalian gene expression control. Nature. 2011;473(7347):337–42. DOI: 10.1038/nature10098. Erratume in Nature. 2013;495(7439):126–7. PMID: 21593866

11. Spruill L.S., Baicu C.F., Zile M.R., McDermott P.J. Selective translation of mRNAs in the left ventricular myocardium of the mouse in response to acute pressure overload. J. Mol. Cell. Cardiol. 2008;44(1):69–75. DOI: 10.1016/j.yjmcc.2007.10.011

12. Amorim I.S., Lach G., Gkogkas C.G. The Role of the Eukaryotic Translation Initiation Factor 4E (eIF4E) in Neuropsychiatric Disorders. Front Genet. 2018;9:561. DOI: 10.3389/fgene.2018.00561

13. Romagnoli A., D'Agostino M., Ardiccioni C., Maracci C., Motta S., La Teana A., Di Marino D. Control of the eIF4E activity: structural insights and pharmacological implications. Cell Mol. Life Sci. 2021;78(21–22):6869–6885. DOI: 10.1007/s00018-021-03938-z

14. Hinnebusch A.G., Ivanov I.P., Sonenberg N. Translational control by 5'-untranslated regions of eukaryotic mRNAs. Science. 2016;352(6292):1413–6. DOI: 10.1126/science.aad9868

15. Truitt M.L., Conn C.S., Shi Z., Pang X., Tokuyasu T., Coady A.M., Seo Y., Barna M., Ruggero D. Diff erential Requirements for eIF4E Dose in Normal Development and Cancer. Cell. 2015;162(1):59–71. DOI: 10.1016/j.cell.2015.05.049

16. Truitt M.L., Conn C.S., Shi Z., Pang X., Tokuyasu T., Coady A.M., Seo Y., Barna M., Ruggero D. Diff erential Requirements for eIF4E Dose in Normal Development and Cancer. Cell. 2015;162(1):59–71. DOI: 10.1016/j.cell.2015.05.049

17. Korneeva N.L., Song A., Gram H., Edens M.A., Rhoads R.E. Inhibition of Mitogen-activated Protein Kinase (MAPK)-interacting Kinase (MNK) Preferentially Aff ects Translation of mRNAs Containing Both a 5'-Terminal Cap and Hairpin. J. Biol. Chem. 2016;291(7):3455–67. DOI: 10.1074/jbc.M115.694190

18. Fan C., Iacobas D.A., Zhou D., Chen Q., Lai J.K., Gavrialov O., Haddad G.G. Gene expression and phenotypic characterization of mouse heart after chronic constant or intermittent hypoxia. Physiol. Genom. 2005;22:292–307.

19. Nagatomo Y., Carabello B.A., Hamawaki M., Nemoto S., Matsuo T., McDermott P.J. Translational mechanisms accelerate the rate of protein synthesis during canine pressure-overload hypertrophy. Am. J. Physiol. Content. 1999;277:H2176–H2184.

20. Holz M.K., Ballif B.A., Gygi S.P., Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005;123(4):569–80. DOI: 10.1016/j.cell.2005.10.024

21. Chauvin C., Koka V., Nouschi A., Mieulet V., Hoareau-Aveilla C., Dreazen A., Cagnard N., Carpentier W., Kiss T., Meyuhas O., Pende M. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene. 2014;33(4):474–83. DOI: 10.1038/onc.2012.606

22. Zhang D., Contu R., Latronico M.V., Zhang J., Rizzi R., Catalucci D., Miyamoto S., Huang K., Ceci M., Gu Y., Dalton N.D., Peterson K.L., Guan K.L., Brown J.H., Chen J., Sonenberg N., Condorelli G. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J. Clin. Invest. 2010;120(8):2805–16. DOI: 10.1172/JCI43008. Erratum in J. Clin. Invest. 2010;120(10):3735. Zhang, Jian Ling [corrected to Zhang, Jianlin]. 1

23. Zhu Y., Pires K.M., Whitehead K.J., Olsen C.D., Wayment B., Zhang Y.C., Bugger H., Ilkun O., Litwin S.E., Thomas G., Kozma S.C., Abel E.D. Mechanistic target of rapamycin (Mtor) is essential for murine embryonic heart development and growth. PLoS One. 2013;8(1):e54221. DOI: 10.1371/journal.pone.0054221

24. Mazelin L., Panthu B., Nicot A.S., Belotti E., Tintignac L., Teixeira G., Zhang Q., Risson V., Baas D., Delaune E., Derumeaux G., Taillandier D., Ohlmann T., Ovize M., Gangloff Y.G., Schaeff er L. mTOR inactivation in myocardium from infant mice rapidly leads to dilated cardiomyopathy due to translation defects and p53/JNK-mediated apoptosis. J. Mol. Cell Cardiol. 2016;97:213–25. DOI: 10.1016/j.yjmcc.2016.04.011

25. Shende P., Plaisance I., Morandi C., Pellieux C., Berthonneche C., Zorzato F., Krishnan J., Lerch R., Hall M.N., Rüegg M.A., Pedrazzini T., Brink M. Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice. Circulation. 2011;123(10):1073–82. DOI: 10.1161/CIRCULATIONAHA.110.977066

26. McMullen J.R., Sherwood M.C., Tarnavski O., Zhang L., Dorfman A.L., Shioi T., Izumo S. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation. 2004;109(24):3050–5. DOI: 10.1161/01.CIR.0000130641.08705.45

27. Völkers M., Toko H., Doroudgar S., Din S., Quijada P., Joyo A.Y., Ornelas L., Joyo E., Thuerauf D.J., Konstandin M.H., Gude N., Glembotski C.C., Sussman M.A. Pathological hypertrophy amelioration by PRAS40-mediated inhibition of mTORC1. Proc. Natl. Acad. Sci. USA. 2013;110(31):12661–6. DOI: 10.1073/pnas.1301455110

28. Ranek M.J., Kokkonen-Simon K.M., Chen A., Dunkerly-Eyring B.L., Vera M.P., Oeing C.U., Patel C.H., Nakamura T., Zhu G., Bedja D., Sasaki M., Holewinski R.J., Van Eyk J.E., Powell J.D., Lee D.I., Kass D.A. PKG1-modifi ed TSC2 regulates mTORC1 activity to counter adverse cardiac stress. Nature. 2019;566(7743):264–269. DOI: 10.1038/s41586-019-0895-y

29. González-Terán B., López J.A., Rodríguez E., Leiva L., Martínez-Martínez S., Bernal J.A., Jiménez-Borreguero L.J., Redondo J.M., Vazquez J., Sabio G. p38γ and δ promote heart hypertrophy by targeting the mTOR-inhibitory protein DEPTOR for degradation. Nat. Commun. 2016;7:10477. DOI: 10.1038/ncomms10477

30. Li Z., Carter JD., Dailey L.A., Huang Y.C. Pollutant particles produce vasoconstriction and enhance MAPK signaling via angiotensin type I receptor. Environ. Health Perspect. 2005;113(8):1009–14. DOI: 10.1289/ehp.7736. PMID: 16079071; PMCID: PMC1280341

31. Giorgini P., Di Giosia P., Grassi D., Rubenfi re M., Brook R.D., Ferri C. Air Pollution Exposure and Blood Pressure: An Updated Review of the Literature. Curr. Pharm. Des. 2016;22(1):28–51. DOI: 10.2174/1381612822666151109111712

32. Sun C.Y., Chang S.C., Wu M.S. Uremic toxins induce kidney fi - brosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLoS One. 2012;7(3):e34026. DOI: 10.1371/journal.pone.0034026

33. Zhang J.-x., Zhang Y.-p., Wu Q.-n. et al. Uric acid induces oxidative stress via an activation of the renin–angiotensin system in 3T3-L1 adipocytes. Endocrine. 2015;48:135–142. DOI: 10.1007/s12020-014-0239-5

34. Chaudhary K., Malhotra K., Sowers J., Aroor A. Uric Acid — key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med. 2013;3(3):208–220. DOI: 10.1159/000355405

35. Afsar B., Elsurer Afsar R., Kanbay A., Covic A., Ortiz A., Kanbay M. Air pollution and kidney disease: review of current evidence. Clin. Kidney J. 2019;12(1):19–32. DOI: 10.1093/ckj/sfy111

36. Yu T., Huang Z., Pu Z. Identifi cation of Potential Diagnostic Biomarkers and Biological Pathways in Hypertrophic Cardiomyopathy Based on Bioinformatics Analysis. Genes (Basel). 2022;13(3):530. DOI: 10.3390/genes13030530

37. Herman DS., Lam L., Taylor M.R., Wang L., Teekakirikul P., Christodoulou D., Conner L., DePalma S.R., McDonough B., Sparks E., Teodorescu D.L., Cirino A.L., Banner N.R., Pennell D.J., Graw S., Merlo M., Di Lenarda A., Sinagra G., Bos J.M., Ackerman M.J., Mitchell R.N., Murry C.E., Lakdawala N.K., Ho C.Y., Barton P.J., Cook S.A., Mestroni L., Seidman J.G., Seidman C.E. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 2012;366(7):619–28. DOI: 10.1056/NEJMoa1110186

38. Guo W., Schafer S., Greaser M.L., Radke M.H., Liss M., Govindarajan T., Maatz H., Schulz H., Li S., Parrish A.M., Dauksaite V., Vakeel P., Klaassen S., Gerull B., Thierfelder L., Regitz-Zagrosek V., Hacker T.A., Saupe K.W., Dec G.W., Ellinor P.T., MacRae C.A., Spallek B., Fischer R., Perrot A., Özcelik C., Saar K., Hubner N., Gotthardt M. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. 2012;18(5):766–73. DOI: 10.1038/nm.2693

39. Larson E.J., Gregorich Z.R., Zhang Y., Li B.H., Aballo T.J., Melby J.A., Ge Y., Guo W. Rbm20 ablation is associated with changes in the expression of titin-interacting and metabolic proteins. Mol. Omics. 2022;18(7):627–634. DOI: 10.1039/d2mo00115b

40. Zhu C., Chen Z., Guo W. Pre-mRNA mis-splicing of sarcomeric genes in heart failure. Biochim. Biophys. Acta Mol. Basis Dis. 2017;1863(8):2056–2063. DOI: 10.1016/j.bbadis.2016.11.008

41. Li S., Guo W., Dewey C.N., Greaser M.L. Rbm20 regulates titin alternative splicing as a splicing repressor. Nucleic Acids Res. 2013;41(4):2659–72. DOI: 10.1093/nar/gks1362

42. Methawasin M., Hutchinson K.R., Lee E.J., Smith J.E. 3rd., Saripalli C., Hidalgo C.G., Ottenheijm C.A., Granzier H. Experimentally increasing titin compliance in a novel mouse model attenuates the Frank-Starling mechanism but has a benefi cial eff ect on diastole. Circulation. 2014;129(19):1924–36. DOI: 10.1161/CIRCULATIONAHA.113.005610

43. Li S., Guo W., Schmitt B.M., Greaser M.L. Comprehensive analysis of titin protein isoform and alternative splicing in normal and mutant rats. J. Cell Biochem. 2012;113(4):1265–73. DOI: 10.1002/jcb.23459

44. Greaser ML., Warren C.M., Esbona K., Guo W., Duan Y., Parrish A.M., Krzesinski P.R., Norman H.S., Dunning S., Fitzsimons D.P., Moss R.L. Mutation that dramatically alters rat titin isoform expression and cardiomyocyte passive tension. J .Mol. Cell Cardiol. 2008;44(6):983–91. DOI: 10.1016/j.yjmcc.2008.02.272

45. Guo W., Pleitner J.M., Saupe K.W., Greaser M.L. Pathophysiological defects and transcriptional profi ling in the RBM20-/- rat model. PLoS One. 2013;8(12):e84281. DOI: 10.1371/journal.pone.0084281

46. Streckfuss-Bömeke K., Tiburcy M., Fomin A., Luo X., Li W., Fischer C., Özcelik C., Perrot A., Sossalla S., Haas J., Vidal R.O., Rebs S., Khadjeh S., Meder B., Bonn S., Linke W.A., Zimmermann W.H., Hasenfuss G., Guan K. Severe DCM phenotype of patient harboring RBM20 mutation S635A can be modeled by patient-specifi c induced pluripotent stem cell-derived cardiomyocytes. J. Mol. Cell Cardiol. 2017;113:9–21. DOI: 10.1016/j.yjmcc.2017.09.008

47. Briganti F., Sun H., Wei W., Wu J., Zhu C., Liss M., Karakikes I., Rego S., Cipriano A., Snyder M., Meder B., Xu Z., Millat G., Gotthardt M., Mercola M., Steinmetz L.M. iPSC Modeling of RBM20-Defi cient DCM Identifi es Upregulation of RBM20 as a Therapeutic Strategy. Cell Rep. 2020;32(10):108117. DOI: 10.1016/j.celrep.2020.108117

48. Maatz H., Jens M., Liss M., Schafer S., Heinig M., Kirchner M., Adami E., Rintisch C., Dauksaite V., Radke M.H., Selbach M., Barton P.J., Cook S.A., Rajewsky N., Gotthardt M., Landthaler M., Hubner N. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. J. Clin. Invest. 2014;124(8):3419–30. DOI: 10.1172/JCI74523

49. Zhu C., Yin Z., Ren J., McCormick R.J., Ford S.P., Guo W. RBM20 is an essential factor for thyroid hormone-regulated titin isoform transition. J. Mol. Cell Biol. 2015;7(1):88–90. DOI: 10.1093/jmcb/mjv002

50. Steinmaus C.M. Perchlorate in Water Supplies: Sources, Exposures, and Health Eff ects. Curr. Environ. Health Rep. 2016;3(2):136–43. DOI: 10.1007/s40572-016-0087-y

51. Braverman L.E., He X., Pino S., Cross M., Magnani B., Lamm S.H., Kruse M.B., Engel A., Crump K.S., Gibbs J.P. The eff ect of perchlorate, thiocyanate, and nitrate on thyroid function in workers exposed to perchlorate long-term. J. Clin. Endocrinol. Metab. 2005;90(2):700–6. DOI: 10.1210/jc.2004-1821

52. Kluska K., Adamczyk J., Krężel A. Metal binding properties of zinc fi ngers with a naturally altered metal binding site. Metallomics. 2018;10(2):248–263. DOI: 10.1039/c7mt00256d

53. Haas J., Frese K.S., Park Y.J., Keller A., Vogel B., Lindroth A.M., Weichenhan D., Franke J., Fischer S., Bauer A., Marquart S., Sedaghat-Hamedani F., Kayvanpour E., Köhler D., Wolf N.M., Hassel S., Nietsch R., Wieland T., Ehlermann P., Schultz J.H., Dösch A., Mereles D., Hardt S., Backs J., Hoheisel J.D., Plass C., Katus H.A., Me der B. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol. Med. 2013;5(3):413–29. DOI: 10.1002/emmm.201201553

54. Meder B., Haas J., Sedaghat-Hamedani F., Kayvanpour E., Frese K., Lai A., Nietsch R., Scheiner C., Mester S., Bordalo D.M., Amr A., Dietrich C., Pils D., Siede D., Hund H., Bauer A., Holzer D.B., Ruhparwar A., Mueller-Hennessen M., Weichenhan D., Plass C., Weis T., Backs J., Wuerstle M., Keller A., Katus H.A., Posch A.E. Epigenome-Wide Association Study Identifi es Cardiac Gene Patterning and a Novel Class of Biomarkers for Heart Failure. Circulation. 2017;136(16):1528–1544. DOI: 10.1161/CIRCULATIONAHA.117.027355

55. Rider C.F., Carlsten C. Air pollution and DNA methylation: eff ects of exposure in humans. Clin. Epigenetics. 2019;11(1):131. DOI: 10.1186/s13148-019-0713-2


Рецензия

Для цитирования:


Нечаев Д.Н., Миролюбов А.А., Милоголова Д.С., Попруга К.Э., Титова А.Г., Ломов А.Н. Промышленные поллютанты и эпигенетические факторы, ассоциированные с кардиомиопатиями. Клиническая медицина. 2023;101(1):18-25. https://doi.org/10.30629/0023-2149-2023-101-1-18-25

For citation:


Nechaev D.N., Mirolyubov A.A., Milogolova D.S., Popruga K.E., Titova A.G., Lomov A.N. Industrial pollutans and epigenetic factors associated with cardiomyopathies. Clinical Medicine (Russian Journal). 2023;101(1):18-25. (In Russ.) https://doi.org/10.30629/0023-2149-2023-101-1-18-25

Просмотров: 679


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)