Preview

Clinical Medicine (Russian Journal)

Advanced search

Complications in COVID-19 patients. Suggested mechanisms of correction

https://doi.org/10.30629/0023-2149-2020-98-4-256-265

Abstract

The review evidences the imbalance in innate and adaptive immunity in severely ill patients with COVID-19. In this case, the complement system is activated, the relationship between individual subpopulations of T-lymphocytes is disrupted, and the content of pro-inf ammatory cytokines and chemokines increases, thus leading to the development of the so-called «cytokine storm». At the same time, there occurs a hypercoagulation, accompanied by an increase in the expression of tissue and von Willebrand factors on the blood vessel endothelium, increased platelet aggregation, and an increase in the D-dimer and f brinogen/f brin degradation products. These processes are concomitant with the development of microangiopathy, immunothrombosis, disseminated intravascular coagulation and multiple organ failure. Under the inf uence of the virus and the developed immunity and hemostasis shifts, complications in the following systems and organs may occur: respiratory system (pneumonia, acute respiratory distress syndrome), cardiovascular system (up to an acute heart failure and myocardial infarction), the gastro-intestinal tract, liver, kidneys and central nervous system (up to encephalitis and stroke). Therefore, peptide immunity modulator Thymalin, anticoagulant Heparin and anti-platelet agents are recommended to supplement conventional therapy in high-risk patients from the f rst day of their hospitalization in order to correct above disorders. The search of papers for this review has been made through PubMed in the English and Russian languages. The review includes papers published in the period of 2000—2020.

About the Authors

V. Kh. Khavinson
St. Petersburg Institute of Bioreglation and Gerontology; Pavlov Institute of Physiology RAS
Russian Federation

197110, St. Petersburg; 199034, St. Petersbsurg.



B. I. Kuznik
Chita State Medical Academy; Innovative Clinic of the Health Academy
Russian Federation

Kuznik Boris Ilyich — MD, PhD, DSc, prof., professor of the Department of Normal Physiology.

 

672000, Chita.



References

1. Qi F., Qian S., Zhang S., Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem. Biophys. Res. Commun. 2020;526(1):135-40. DOI: 10.1016/j.bbrc.2020.03.044.

2. Ortega J.T., Serrano M.L., Pujol F.H., Rangel H.R. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI. J. 2020;19:410-7. DOI: 10.17179/excli2020-1167.

3. Wang K., Chen W., Zhou Y-S., Lian J-Q., Zhang Z., Du P. et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. Bio. Rxiv. The preprint server for biology. 2020;03.14.988345. https://doi.org/10.1101/2020.03.14.988345.

4. Yu F., Du L., Ojcius D.M., Pan C., Jiang S. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes. Infect. 2020;22(2):74-9. DOI: 10.1016/j.micinf.2020.01.003.

5. Liu P., Blet A., Smyth D., Li Н. The science underlying COVID-19: implications for the cardiovascular system. Circulation. 2020. PMID: 32293910. DOI: 10.1161/CIRCULATIONAHA.120.047549.

6. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Yu. et al. Dysregu-lation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020; Published online 2020; Mar 12. DOI: 10.1093/cid/ciaa248.

7. Magro C., Mulvey J.J., Berlin D., Nuovo G., Salvatore S., Harp J. et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl. Res. 2020:S1931-5244(20)30070-0. DOI: 10.1016/j.trsl.2020.04.007.

8. McGonagle D., Sharif K., O'Regan A., Bridgewood C. The Role of Cytokines Including Interleukin-6 in COVID-19 Induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun. Rev. 2020;19(6):102537. DOI: 10.1016/j.autrev.2020.102537.

9. Mehta P., McAuley D., Brown M., Sanchez E., Tattersall R., Manson J. COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. Lancet. 2020;395(10229):1033-4. DOI: 10.1016/S0140-6736(20)30628-0.

10. Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020:e200994. DOI: 10.1001/jamaint-ernmed.2020.0994.

11. Gao Y., Li T., Han M., Li X., Wu D., Xu Yu. et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J. Med. Virol. 2020:10.1002/jmv.25770. DOI: 10.1002/jmv.25770.

12. Zhang W., Zhao Y., Zhang F., Wang Q., Li T., Liu Z. et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin. Immunol. 2020:108393. DOI: 10.1016/j.clim.2020.108393.

13. Yang Y., Shen C., Li J., Yuan J., Yang M., Wang F. et al. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. Med. Rxiv. 2020. DOI: https://doi.org/10.1101/2020.03.02.20029975.

14. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506. DOI: https://doi.org/10.1016/S0140-6736(20)30183-5.

15. Neurath M.F. Covid-19 and immunomodulation in IBD. Gut. 2020;69:1335-42. DOI: 10.1136/gutjnl-2020-321269.

16. Jamilloux Y., Henry T., Belot A., Viel S., Fauter M., Jammal T. et al. Should We Stimulate or Suppress Immune Responses in COVID-19? Cytokine and Anti-Cytokine Interventions. Autoimmun. Rev. 2020;19(7):102567. DOI: 10.1016/j.autrev.2020.102567.

17. Gomez-Arbelaez D., Ibarra-Sanchez G., Garcia-Gutierrez A., Comanges-Yeboles A., Ansuategui-Vicente M., Gonzalez-Fajardo J.A. COVID-19-related aortic thrombosis: a report of four cases. Ann. Vasc. Surg. 2020. DOI: 10.1016/j.avsg.2020.05.031.

18. Beristain-Covarrubias N., Perez-Toledo M., Thomas M.R., Henderson I.R., Watson S.P., Cunningham A.F. Understanding Infection-Induced Thrombosis: Lessons Learned From Animal Models. Front. Immunol. 2019;10:2569. DOI: 10.3389/fimmu.2019.02569.

19. Henry B.M., Vikse J., Benoit S., Favaloro E.J., Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin. Chim. Acta. 2020;507:167-73. DOI: 10.1016/j.cca.2020.04.027.

20. Li X., Ma X. Acute respiratory failure in COVID-19: is it «typi-cal» ARDS? Version 2. Crit. Care. 2020;24(1):198. DOI: 10.1186/s13054-020-02911-9.

21. Chung M., Bernheim A., Mei X., Zhang N., Huang M., Zeng X. et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology. 2020;295(1):202-7. DOI: 10.1148/radiol.2020200230.

22. Tang N., Bai H., Chen X., Gong J., Li D., Sun Z.J. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Thromb. Haemost. 2020. DOI: 10.1111/jth.14817.

23. Deng Y., Liu W., Liu K., Fang Y.Y., Shang J., Zhou L. et al. Clinical characteristics of fatal and recovered cases of coronavi-rus disease 2019 (COVID-19) in Wuhan, China: a retrospective study. Chin. Med. J. 2020;20(Supl.):32209890. DOI: 10.1097/CM9.0000000000000824.

24. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18(4):844-7.

25. Thachil J. The versatile heparin in COVID-19. J. Thromb. Haemost. 2020;18(5):1020-22. DOI: 10.1111/jth.14821.

26. Lin L., Lu L., Cao W., Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg. Microbes. Infect. 2020;9(1):727-32. DOI: 10.1080/22221751.2020.1746199.

27. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-42. DOI:10.1001/jama.2020.2648.

28. Epidemiology Working Group for NCIP Epidemic Response. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liux-ingbingxue Zazhi. 2020;41(2):145-51. DOI: 10.3760/cma.j.issn.0254-6450.2020.02.003.

29. Driggin E., Madhavan M.V., Bikdeli B., Chuich T., Laracy J., Bion-di-Zoccai G. et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J. Am. Coll. Cardiol. 2020;75(18):2352-71. DOI: 10.1016/j.jacc.2020.03.031.

30. Guzik T.J., Mohiddin S.A., Dimarco A., Patel V., Savvatis K., Marel-li-Berg F.M. et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Car-diovasc. Res. 2020:106. DOI: 10.1093/cvr/cvaa106.

31. Chen N., Zhou M., Dong X. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507-13.

32. Liu K., Fang Y.Y., Deng Y., Liu W., Wang M.F., Ma J.P. et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin. Med. J. 2020;133(9):1025-31. DOI: 0.1097/CM9.0000000000000744.

33. Chen L., Li X., Chen M., Feng Y., Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res. 2020;116(6):1097-100. DOI.ORG/10.1093/CVR/CVAA078.

34. Schmulson M., Davalos M.F., Berumen J. Beware: Gastrointestinal symptoms can be a manifestation of COVID-19. Rev. Gastroenterol. Mex. 2020;S0375-0906(20)30044-6. DOI: 0.1016/j.rg-mx.2020.04.001.

35. Jin X., Lian J.S., Hu J.H., Gao J., Zheng L., Zhang Y.M. et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020;69(6):1002--9. DOI: 10.1136/gut-jnl-2020-320926.

36. Smyk W., Janik M.K., Portincasa P., Milkiewicz P., Lammert F., Krawczyk M. COVID-19: focus on the lungs but do not forget the gastrointestinal tract. Eur. J. Clin. Invest. 2020;e13276. DOI: 10.1111/eci.13276.

37. Cheng H., Wang Y., Wang G.Q. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J. Med. Virol. 2020. doi: 10.1002/jmv.25785.

38. Xu L., Liu J., Lu M., Yang D., Zheng X.L. Liver injury during highly pathogenic/human coronavirus infections. Liv. Int. 2020;40:998-1004. DOI: 10.1111/liv.14435.

39. Fan C., Li K., Ding Y., Lu W.L., Wang J. ACE2 Expression in Kidney and Testis May Cause Kidney and Testis Damage After 2019-nCoV Infection. Med. Rxiv. 2020. DOI: https://doi.org/10.1101/2020.02.12.20022418.

40. Zhang Y., Geng X., Tan Y., Li Q., Xu C., Xu J. et al. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed. Pharmacother. 2020;127:110195. DOI: 10.1016/j.biopha.2020.110195.

41. Ramani A., Muller L., Ostermann P., Gabriel E., Abida-Islam P., Aruljothi M. et al. SARS-CoV-2 targets cortical neurons of 3D human brain organoids and shows neurodegeneration-like effects. Bio. Rxiv. 2020. DOI: https://doi.org/10.1101/2020.05.20.106575.

42. Wu Y., Xu X., Chen Z., Duan J., Hashimoto K., Yang L. et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain. Behav. Immun. 2020;pii:S0889-1591(20)30357-3. DOI: 10.1016/j.bbi.2020.03.031.

43. Mao L., Wang M.D., Chen S.H., He Q.W., Chang J., Hong C.D. et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. Med. Rxiv. 2020. DOI: https://doi.org/10.1101/2020.02.22.20026500.

44. Werner С., Scullen T., Mathkour M., Zeoli T., Beighley A., Kilgore M. et al. Impact of Coronavirus Disease of 2019: Practical Considerations for the Neuroscience Community. World Neurosurg. 2020;139:344-54. DOI: 10.1016/j.wneu.2020.04.222.

45. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8:420-22. DOI: 10.1016/S2213-2600(20)30076-X.

46. Li H., Xue Q., Xu X. Involvement of the Nervous System in SARS-CoV-2 Infection. Neurotox Res. 2020;38(1):1-7. DOI: 10.1007/s12640-020-00219-8. Epub. 2020; May 13.

47. Siedlecki J., Brantl V., Schworm B., Mayer W.J., Gerhardt M., Michalakis S. et al. COVID-19: Ophthalmological Aspects of the SARS-CoV-2 Global Pandemic. Klin. Monbl. Augenheilkd. 2020;237(5):675-80. DOI: 10.1055/a-1164-9381.

48. Fantini J., Scala C.D., Chahinian H., Yahi N. Structural and molecular modeling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int. J. Antimicrob. Agents. 2020;55(5):105960. DOI: 10.1016/j.ijantim-icag.2020.105960.

49. Zhang C., Wu Z., Li J.W., Zhao H., Wang G.Q. Cytokine release syndrome in severe COVID-19: Interleukin-6 receptor antagonist To-cilizumab may be the key to reduce the mortality. Int. J. Antimicrob. Agents. 2020;55(5):105954. DOI: 10.1016/j.ijantimicag.2020.105954.

50. Sargiacomo C., Sotgia F., Lisanti M.P. COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? Aging (Albany NY). 2020;12(8):6511. DOI.org/10.18632/aging.103001.

51. Jamilloux Y., Henry T., Belot A., Viel S., Fauter M., El Jammal T. et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun. Rev. 2020;19(7):102567. DOI: 10.1016/j.autrev.2020.102567.

52. Khavinson V.Kh., Morozov V.G. Experimental and clinical study of a new immunity modulator — thymalin. Military. Med. J. 1982;5:37-9. (in Russian)

53. Morozov V.G., Khavinson V.Kh., Malinin V.V. Peptide thymomimetics. Saint Petersburg «Nauka». 2000. (in Russian)

54. Khavinson V.Kh., Kuznik B.I., Ryzhak G.A. Peptide geroprotectors are epigenetic regulators of the physiological functions of the body. St. Petersburg: Russian State Pedagogical University I.A. Herzen, 2014. (in Russian)

55. Kuznik B.I., Morozov V.G., Khavinson V.Kh. Cytomediny. Saint Petersburg: «Nauka». 1998. (in Russian)

56. Kuznik B.I., Likhanov I.D., Zepelev V.L., Sizonenko V.A. Theoretical and clinical aspects of bioregulatory therapy in surgery and traumatology. Novosibirsk «Nauka» 2008. (in Russian)

57. Bonagura V.R., Rosenthal D.W. Infections that cause secondary immune deficiency. Stiehm's Immune Def ciencies. 2020:1035-1058. DOI: 10.1016/B978-0-12-816768-7.00049-1


Review

For citations:


Khavinson V.Kh., Kuznik B.I. Complications in COVID-19 patients. Suggested mechanisms of correction. Clinical Medicine (Russian Journal). 2020;98(4):256-265. (In Russ.) https://doi.org/10.30629/0023-2149-2020-98-4-256-265

Views: 4582


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)