Применение ультрафиолетового излучения в медицинской практике
https://doi.org/10.30629/0023-2149-2022-100-6-278-284
Аннотация
В настоящее время в медицине широко применяются физиотерапевтические методы. Одним из них является использование ультрафиолетового (УФ) излучения. Оно обладает широким спектром биологических эффектов.
Цель данного обзора литературы — определение возможности применения УФ-излучения в медицине, в частности в стоматологии.
Материал и методы. В данной статье были изучены оригинальные научные работы с использованием следующих баз данных: PubMed, Google School, eLibrary, РИНЦ, UpToDate, Elsiever, Scopus. Нами было рассмотрено 65 статей англо- и русскоязычных авторов. При поиске научных работ для определения возможности применения УФ в медицине было решено разделить его применение на 4 основных раздела: влияние на организм, дезинфекция, диагностика и лечение.
Результат. УФ является эффективным средством, используемым при лечении различных соматических и стоматологических заболеваний. Возможно применять ультрафиолетовое излучение в качестве дополнительного антисептического средства, обладающего малым количеством побочных эффектов.
Об авторах
Н. Г. СаркисянРоссия
Нарине Гришаевна Саркисян, д-р мед. наук, доцент, врач – стоматолог-терапевт высшей квалификационной категории, хирург-
стоматолог, пародонтолог
ФГБОУ ВО «Уральский государственный медицинский университет»
кафедра терапевтической стоматологии и пропедевтики стоматологических заболеваний
620028
Екатеринбург
А. И. Пасхина
Россия
Анастасия Игоревна Пасхина, студент
ФГБОУ ВО «Уральский государственный медицинский университет»
стоматологический факультет
3-й курс
620028
Екатеринбург
Г. Ю. Шагеев
Россия
Глеб Юрьевич Шагеев, студент
ФГБОУ ВО «Уральский государственный медицинский университет»
стоматологический факультет
3-й курс
620028
Екатеринбург
С. Г. Меликян
Россия
Светлана Генриковна Меликян
ФГБОУ ВО «Уральский государственный медицинский университет»
620028
Екатеринбург
Список литературы
1. Hart P. H. et al. Exposure to ultraviolet radiation in the modulation of human diseases. Annual Review of Pathology: Mechanisms of Disease. 2019; 14: 55–81.
2. Marionnet C. et al. Diversity of biological eff ects induced by longwave UVA rays (UVA1) in reconstructed skin. PloS one. 2014; 9 (8): e105263.
3. Mohania D. et al. Ultraviolet radiations: Skin defense-damage mechanism. Ultraviolet Light in Human Health, Diseases and Environment. 2017: 71–87.
4. You Y. H. et al. Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells. Journal of Biological Chemistry. 2001; 276 (48): 44688–44694.
5. Narzt M. S. et al. A «multi-omic» investigation of the effects of long wavelength ultraviolet light on primary human keratinocytes. Free Radical Biology and Medicine. 2016; 1 (96): S67.
6. De Jager T. L., Cockrell A. E., Du Plessis S. S. Ultraviolet light induced generation of reactive oxygen species. Ultraviolet Light in Human Health, Diseases and Environment. 2017: 15–23.
7. Craig S., Earnshaw C. H., Virós A. Ultraviolet light and melanoma. The Journal of pathology. 2018; 244 (5): 578–585.
8. Mullenders L. H. F. Solar UV damage to cellular DNA: from mechanisms to biological eff ects. Photochemical & Photobiological Sciences. 2018; 17 (12): 1842–1852.
9. Davydovna G. D. et al. Mechanisms of therapeutic effect of ultraviolet rays and their promoting factors. International scientific review. 2019; LVIII.
10. Montecino M. et al. Vitamin D control of gene expression: temporal and spatial parameters for organization of the regulatory machinery. Critical Reviews™ in Eukaryotic Gene Expression. 2008; 18 (2).
11. Lewy A. J. et al. The phase shift hypothesis for the circadian component of winter depression. Dialogues in clinical neuroscience. 2007; 9 (3): 291.
12. Juzeniene A., Moan J. Benefi cial eff ects of UV radiation other than via vitamin D production. Dermato-endocrinology. 2012; 4 (2): 109–117
13. Panov V., Borisova-Papancheva T. Application of ultraviolet light (UV) in dental medicine. Journal of Medical and Dental Practice. 2015; 2 (2): 194–200.
14. Tysiąc-Miśta M. et al. Air disinfection procedures in the dental office during the COVID–19 pandemic. Medycyna pracy. 2021; 72 (1): 39–48.
15. Ong S. W. X. et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020; 323 (16): 1610–1612.
16. Morawska L., Cao J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environment international. 2020; 139: 105730.
17. AL-Khafagy M. T., AL–Yasiri I. K., Hamed S. J. Disinfection of Alginate and silicon impressions by using UV and blue light (in vivo study). Journal of Kufa for Nursing Science. 2013; 3 (2).
18. Larsen T. et al. Disinfection of dental impressions and occlusal records by ultraviolet radiation. The European journal of prosthodontics and restorative dentistry. 2000; 8 (2): 71–74.
19. Metzger Z., Better H., Abramovitz I. Immediate root canal disinfection with ultraviolet light: an ex vivo feasibility study. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2007; 104 (3): 425–433.
20. Gujjari S. K. et al. Comparative evaluation of ultraviolet and microwave sanitization techniques for toothbrush decontamination. Journal of International Society of Preventive & Community Dentistry. 2011; 1 (1): 20.
21. Metzger Z. et al. Sensitivity of oral bacteria to 254 nm ultraviolet light. International endodontic journal. 2007; 40 (2): 120–127.
22. Uchinuma S. et al. Effects of UVB and UVC irradiation on cariogenic bacteria in vitro. Lasers in medical science. 2019; 34 (5): 981–989.
23. Alharbi M., Bakitian F., Alenezi A. Evaluation of bactericidal effects of ultraviolet light C irradiation on cariogenic bacteria: An in vitro study. BMC Oral Health. 2021; 21 (1): 1–8.
24. Fondriest J. Shade matching in restorative dentistry: the science and strategies. International Journal of Periodontics and Restorative Dentistry. 2003; 23 (5): 467–480.
25. Komine F. et al. A modifi ed layering technique to enhance fluorescence in glass–infiltrated aluminum oxide ceramic restorations: Case report. Quintessence international. 2008; 39 (1).
26. Gawriołek M. et al. Color and luminescence stability of selected dental materials in vitro. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry. 2012; 21 (2): 112–122.
27. Panzeri H., Fernandes L. T., Minelll C. J. Spectral fluorescence of direct anterior restorative materials. Australian dental journal. 1977; 22 (6): 458–461.
28. Kumari M., Rafia A. K., Shree R. Changing Concepts in the Diagnosis of Dental Caries: A Review. Department of Public Health Dentistry, D. J. College of Dental Sciences and Research, Modinagar, India. 2021. ISSN: 2642–1623.
29. Schwass D. R. et al. Evaluating the effi ciency of caries removal using an Er: YAG laser driven by fluorescence feedback control. Archives of oral biology. 2013; 58 (6): 603–610.
30. Sundstrom F. et al. Laser-induced Fluorescence From Sound and Carious Tooth Substance-Spectroscopic Studies. Swedish Dental Journal. 1985; 9 (2): 71–80.
31. Banerjee A. et al. A confocal microscopic study relating the autofl uorescence of carious dentine to its microhardnes. British Dental Journal. 1999; 187 (4): 206–210.
32. Banerjee A. et al. A confocal micro‐endoscopic investigation of the relationship between the microhardness of carious dentine and its autofl uorescence. European journal of oral sciences. 2010; 118 (1): 75–79.
33. König K., Flemming G., Hibst R. Laser-induced autofluorescence spectroscopy of dental caries. Cellular and molecular biology (Noisy-le-Grand, France). 1998; 44 (8): 1293–1300.
34. Buchalla W. Comparative fluorescence spectroscopy shows differences in noncavitated enamel lesions. Caries research. 2005; 39 (2): 150–156.
35. Борисова Е. Исследование лазерно-индуцированной аутофлуоресценции модели кариеса in vitro / Е. Борисова, Т. Узунов, Л. Аврамов // Лазеры в медицине. – 2006. – 21 (1): 34–41. [Borisova E., Uzunov T., Avramov L. Investigation of laser-induced autofl uorescence of a caries model in vitro. Lasers in medicine. 2006; 21 (1): 34–41. (In Russian)].
36. Zhang L., Nelson L. Y., Seibel E. J. Red-shifted fluorescence of sound dental hard tissue. Journal of Biomedical Optics. 2011; 16 (7): 071411.
37. Sundstrom F. et al. Laser-induced Fluorescence From Sound and Carious Tooth Substance-Spectroscopic Studies. Swedish Dental Journal. 1985; 9 (2): 71–80.
38. Dahal S., Agrawal N. K., Shrestha P. K. Role of dentists in Disaster Victim Identifi cation of Sita air crash, Nepal. Journal of Institute of Medicine. 2014; 36 (2).
39. Campobasso C. P. et al. Craniofacial identifi cation by comparison of antemortem and postmortem radiographs: two case reports dealing with burnt bodies. The American journal of forensic medicine and pathology. 2007; 28 (2): 182–186.
40. Guzy G., Clayton M. A. Detection of composite resin restorations using an ultraviolet light–emitting diode flashlight during forensic dental identifi cation. The American journal of forensic medicine and pathology. 2013; 34 (2): 86–89.
41. Valenzuela A. et al. The application of dental methods of identifi cation to human burn victims in a mass disaster. International journal of legal medicine. 2000; 113 (4): 236–239.
42. Hermanson A. S. et al. Ultraviolet illumination as an adjunctive aid in dental inspection. Journal of forensic sciences. 2008; 53 (2): 408–411.
43. Solheim T. et al. The «Scandinavian Star» ferry disaster 1990 — a challenge to forensic odontology. International journal of legal medicine. 1992; 104 (6): 339–345.
44. Myers E., Kheradmand S., Miller R. An Update on Narrowband Ultraviolet B Therapy for the Treatment of Skin Diseases. Cureus. 2021; 13 (11).
45. Buonanno M. et al. 207-nm UV light — a promising tool for safe low-cost reduction of surgical site infections. II: In-vivo safety studies. PloS one. 2016; 11 (6): e0138418.
46. Расулов М. М. Влияние коротковолнового ультрафиолетового облучения на заживление ожоговых ран (экспериментальное исследование) / М. М. Расулов [и др.] // Вопросы курортологии, физиотерапии и лечебной физической культуры. – 2016. – 93 (5): 38–42. [Rasulov M. M. Influence of short-wave ultraviolet irradiation on the healing of burn wounds (experimental study). Issues of balneology, physiotherapy and therapeutic physical culture. 2016; 93 (5): 38–42. (In Russian)].
47. Kiricsi Á. et al. Prospective, multicenter, randomized clinical study to evaluate the clinical efficacy and tolerability of long term mixed ultraviolet and visible light phototherapy in eosinophil nasal polyps. Journal of photochemistry and photobiology. B, Biology. 2017; 176: 118–123.
48. Bonis B. et al. 308 nm UVB excimer laser for psoriasis. The Lancet. 1997; 350 (9090): 1522.
49. Wang Y. E. Incidence and profile of skin cancer in patients undergoing ultraviolet–B phototherapy: University of British Columbia, 2020.
50. Bhatia S., Kohli S. Lasers in root canal sterilization-a review. International journal of scientific study. 2013; 1 (3): 107–111.
51. Luke A. M. et al. Lasers: A review with their applications in oral medicine. Journal of lasers in medical sciences. 2019; 10 (4): 324.
52. Eslami E., Kazeminejad E., Karimian A. The Effect of Beam Direction on Absorption and Transmission of Ultraviolet to Infraed Wave-length in Three Different Dentin Thicknesses. 2021.
53. Köllner K. et al. Treatment of oral lichen planus with the 308‐nm UVB excimer laser–early preliminary results in eight patients. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. 2003; 33 (3): 158–160.
54. Shuping G. B. et al. Reduction of intracanal bacteria using nickel-titanium rotary instrumentation and various medications. Journal of endodontics. 2000; 26 (12): 751–755.
55. Shabahang S., Torabinejad M. Effect of MTAD on Enterococcus faecalis-contaminated root canals of extracted human teeth. Journal of Endodontics. 2003; 29 (9): 576–579.
56. Larinskaya A. V. Comparative evaluation of tooth root channel system damage during pre-obturative endodontic processing by physical methods. Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm. 2018; 12 (03).
57. Саркисян Н. Ультрафиолетовое облучение при лечении воспалительных заболеваний пародонта / Н. Саркисян [и др.] // Пародонтология. – 2016. – 21 (4): 70–72. [Sarkisyan N. et al. Ultraviolet irradiation in the treatment of infl ammatory periodontal diseases. Periodontology. 2016; 21 (4): 70–72. (In Russian)].
58. Aung N. et al. The eff ects of ultraviolet light-emitting diodes with different wavelengths on periodontopathic bacteria in vitro. Photobiomodulation, photomedicine, and laser surgery. 2019; 37 (5): 288–297.
59. Takada A. et al. Bactericidal eff ects of 310 nm ultraviolet lightemitting diode irradiation on oral bacteria. BMC Oral Health. 2017; 17 (1): 1–10.
60. Денисова Ю. Л. Вакуум-УФО-терапия в системе комплексного лечения пациентов с хроническим генерализованным сложным периодонтитом / Ю. Л. Денисова, С. П. Рубникович // Достижения фундаментальной, клинической медицины и фармации. – 2020. – С. 135–136. [Denisova Yu. L., Rubnikovich S. P. Vacuum-UFO therapy in the system of complex treatment of patients with chronic generalized complex periodontitis. Achievements of fundamental, clinical medicine and pharmacy. 2020: 135–136. (In Russian)].
61. Кузьменкова А. В. Методы лечения стоматитов у детей / А. В. Кузьменкова, Е. Г. Асирян // Достижения фундаментальной, клинической медицины и фармации. – 2021. С. 191–193. [Kuzmenkova A. V., Asirian E. G. Мethods of treatment of stomatitis in children. Achievements of fundamental, clinical medicine and pharmacy. 2021: 191–193. (In Russian)].
62. Sugita Y. et al. UV-pre-treated and protein-adsorbed titanium implants exhibit enhanced osteoconductivity. International journal of molecular sciences. 2020; 21 (12): 4194.
63. Iwasaki C. et al. Tuning of titanium microfi ber scaff old with uvphotofunctionalization for enhanced osteoblast affinity and function. International journal of molecular sciences. 2020; 21 (3): 738.
64. Choi B. et al. Effects of photofunctionalization on early osseointegration of titanium dental implants in the maxillary posterior region: a randomized double-blinded clinical trial. International Journal of Implant Dentistry. 2021; 7 (1): 1–7.
65. Sanchez-Perez A. et al. Control of peri-implant mucous inflammation by using chlorhexidine or Ultraviolet C radiation for cleaning healing abutments. Double-blind randomized clinical trial. Materials. 2020; 13 (5): 1124.
Рецензия
Для цитирования:
Саркисян Н.Г., Пасхина А.И., Шагеев Г.Ю., Меликян С.Г. Применение ультрафиолетового излучения в медицинской практике. Клиническая медицина. 2022;100(6):278-284. https://doi.org/10.30629/0023-2149-2022-100-6-278-284
For citation:
Sarkisyan N.G., Paskhina А.I., Shageev G.Y., Melikyan S.G. The use of ultraviolet radiation in medical practice. Clinical Medicine (Russian Journal). 2022;100(6):278-284. (In Russ.) https://doi.org/10.30629/0023-2149-2022-100-6-278-284