Preview

Clinical Medicine (Russian Journal)

Advanced search

Assessment of the pre-test probability of ischemic heart disease according to the data of dispersion mapping of an electrocardiogram and analysis of heart rate variability

https://doi.org/10.30629/0023-2149-2022-100-4-5-178-184

Abstract

February 2022 est., there were several validated ischemic heart disease (IND) pretest probability scales presented in the clinical guidelines of various cardiology communities (G.A. Diamond and J.S. Forrester, Duke, ESC 2019 scales). Despite their diversity, they lacked clear quantitative criteria and were based on a subjective assessment of the pain syndrome described by a patient, their gender and age. The purpose of this study was to investigate the possibilities of heart rate variability and ECG dispersion mapping for pre-test assessment of the probability of coronary artery disease. We studied 81 patients (mean age 61.48 ± 13.00 years) with suspected CAD. All patients underwent a five-minute ECG recording with the construction of ECG dispersion mapping and assessment of heart rate variability. Each subject underwent coronary angiography (within 12 months before or after the stress test) to verify the damage to the coronary bed. When analyzing the comparison of the results of coronary angiography and dispersion ECG mapping, 3 groups of patients were formed and studied: group A (coronary artery stenosis more than 50%, n = 18), B (coronary artery stenosis less than 50%, n = 16) and C (without coronary artery disease, n = 21). It was noted that the more pronounced the stenosis of the coronary arteries, the higher the index of microalternations “Myocardium” and T-alternation of the myocardium, and the lower the functional reserve of the myocardium. Considering that a short (thirty second) high-resolution ECG recording is required to perform dispersion ECG mapping, this method can be used as a screening for the selection of patients at high risk of coronary heart disease and exercise testing. We suggest that patients should be referred for exercise testing if two of the three criteria are present: BMI ≥ 22%, Functional reserve ≤ 70%, T-alternation ≥ 18% (AUC ROC is 0.718). The sensitivity and specificity of the presented method can be increased by adding indicators from the analysis of heart rate variability (heart rate, HF, LF) and patient’s age (AUC ROC is 0.929) to the formula.

About the Authors

O. M. Maslennikova
Clinical Hospital No. 1 (Volynskaya) of the Administration of the President of the Russian Federation
Russian Federation

 121352, Moscow 



V. N. Ardashev
Clinical Hospital No. 1 (Volynskaya) of the Administration of the President of the Russian Federation
Russian Federation

 121352, Moscow 



E. M. Novikov
Clinical Hospital No. 1 (Volynskaya) of the Administration of the President of the Russian Federation
Russian Federation

 121352, Moscow 



M. M. Stepanov
Clinical Hospital No. 1 (Volynskaya) of the Administration of the President of the Russian Federation
Russian Federation

 121352, Moscow 



S. V. Stebletsov
Clinical Hospital No. 1 (Volynskaya) of the Administration of the President of the Russian Federation
Russian Federation

 121352, Moscow 



T. B. Kirillova
Clinical Hospital No. 1 (Volynskaya) of the Administration of the President of the Russian Federation
Russian Federation

 121352, Moscow 



N. B. Tarabarina
Clinical Hospital No. 1 (Volynskaya) of the Administration of the President of the Russian Federation
Russian Federation

 121352, Moscow 



E. M. Perets
Clinical Hospital No. 1 (Volynskaya) of the Administration of the President of the Russian Federation
Russian Federation

 121352, Moscow 



A. N. Fursov
Main Military Clinical Hospital named after academician N.N. Burdenko of the Ministry of Defense of Russia
Russian Federation

105094,Moscow 



References

1. Fihn S.D., Gardin J.M., Abrams J., Berra K, Blankenship J.C., Dallas A.P., Douglas P.S., Foody J.M., Gerber T.S., Hinderliter A.L., King S.B. 3rd, Kligfield P.D., Krumholz H.M., Kwong R.Y.K., Lim M.J., Linderbaum J.A., Mack M.J., Munger M.A., Prager R.J., Sabik J.F., Shaw L.J., Sikkema J.D., Smith S.R. Jr, Smith S.C. Jr, Spertus J.A., Williams S.V., American College of Cardiology Foundation. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guide - line for the diagnosis and management of patients with stable ischemic heart disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2012;126(25)3097–3137. DOI: 10.1161/CIR.0b013e3182776f83

2. Task Force Members et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur. Heart. J. 2013;34(38):2949–3003. DOI: 10.1093/eurheartj/eht296

3. National clinical guideline centre for acute and chronic conditions (UK). Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin (update). Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. London: Royal College of Physicians (UK), 2016. PMID: 22420013.

4. Baskaran L., Danad I., Gransar H., Hartaigh B.O., Schulman-Marcus J., Lin F.Y., Pena J.M., Hunter A., Newby D.E., Adamson P.D., Min J.K. A comparison of the updated Diamond-Forrester, CAD Consortium, and CONFIRM history-based risk scores for predicting obstructive coronary artery disease in patients with stable chest pain: the SCOT-HEART coronary CTA cohort. JACC Cardiovasc Imaging. 2019;12(7):1392–1400. DOI: 10.1016/j.jcmg.2018.02.020

5. SCOT-HEART investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOTHEART): an open-label, parallel-group, multicentre trial. Lancet. 2015;385(9985):2383–2391. DOI: 10.1016/S0140-6736(15)60291-4

6. Аншелес А.А., Сергиенко И.В., Денисенко-Канкия Е.И., Тюрин В.П., Сергиенко В.Б. Предтестовая оценка вероятности ишемической болезни сердца. Вестник Национального медико-хирургического Центра им. Н.И. Пирогова. Фонд развития современных и цифровых технологий, 2020;3:124–132. [Ansheles A.A., Sergienko I.V., Denisenko-Kankija E.I., Tjurin V.P., Ser gienko V.B. Pre-test assessment of the likelihood of coronary heart disease. Vestnik Nacional’nogo mediko-hirurgicheskogo Centra im. N.I. Pirogova. Fond razvitija sovremennyh i cifrovyh tehnologij, 2020;3:124–132. (In Russian)].DOI: 10.25881/BPNMSC.2020.30.69.023

7. Bittencourt M.S., Hulten E., Polonsky T.S., Hoffman U., Nasir K., Abbara S., Carli M.D., Blankstein R. European society of cardiology — recommended coronary artery disease consortium pretest probability scores more accurately predict obstructive coronary disease and cardiovascular events than the Diamond and Forrester Score: the partners registry. Circulation. 2016;1343:201–211. DOI: 10.1161/CIRCULATIONAHA.116.023396

8. Di Carli M.F., Gupta A. Estimating Pre-Test Probability of Coronary Artery Disease: Battle of the Scores in an Evolving CAD Landscape. JACC Cardiovasc. Imaging. 2019;12(7):1401–1404. DOI: 10.1016/j.jcmg.2018.04.036

9. Ferreira A.M., Marques H., Tralhao A., Santos M.B., Santos A.R., Cardoso G., Dores H., Carvalho M.S., Madeira S., Machado F.P., Cardim N., Goncalves P.A. Pre-test probability of obstructive coronary stenosis in patients undergoing coronary CT angiography: comparative performance of the modified Diamond-Forrester algorithm versus methods incorporating cardiovascular risk factors. International Journal of Cardiology. 2016;222:346–351. DOI: 10.1016/j.ijcard.2016.07.180

10. Foldyna B., Udelson J.E., Karady J., Banerji D., Lu M.T., Mayrhofer T., Bittner D.O., Meyersohn N.M., Emami H., Genders T.S.S., Fordyce C.B., Ferencik M., Douglas P.S., Hoffmann U. Pretest probability for patients with suspected obstructive coronary artery disease: re-evaluating Diamond-Forrester for the contemporary era and clinical implications: insights from the PROMISE trial. Eur. Heart. J. Cardiovasc. Imaging. 2019;20(5):574–581. DOI: 10.1093/ehjci/jey182

11. Juarez-Orozco L.E., Saraste A., Capodanno D., Prescott E., Ballo H., Bax J.J., Wijns W., Knuuti J. Impact of a decreasing pre-test probability on the performance of diagnostic tests for coronary artery disease. Eur. Heart. J. Cardiovasc. Imaging. 2019;20(11):1198–1207. DOI: 10.1093/ehjci/jez054

12. Knuuti J., Wijns W., Saraste A. Capodanno D., Barbato E., FunckBrentano C., Prescott E., Storey R.F., Deaton C., Cuisset T., Agewall S., Dickstein K., Edvardsen T., Escaned J., Gersh B.J., Svitil P., Gilard M., Hasdai D., Hatala R., Mahfoud F, Masip J, Muneretto C., Valgimigli M., Achenbach S., Bax J.J., ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart. J. 2020;41(3):407–477. DOI: 10.1093/eurheartj/ehz425

13. Аншелес А.А., Сергиенко И.В., Денисенко-Канкия Е.И., Сергиенко В.Б. Результаты перфузионной однофотонной эмиссионной томографии миокарда и данных коронарографии у пациентов с различной предтестовой вероятностью ишемической болезни сердца. Терапевтический архив. 2020;92(4)30–36. [Ansheles A.A., Sergienko I.V., Denisenko-Kankiya E.I., Sergienko V.B. Myocardialperfusion single-photon emission computer tomography and coronary angiography results in patients with different pretest probability of ischemic heart disease. Therapeutic Archive. 2020;92(4):30–36. (In Russian)]. DOI: 10.26442/00403660.2020.04.000549

14. Гельцер Б.И., Циванюк М.М., Шахгельдян К.И., Рублев В.Ю. Методы машинного обучения в оценке предтестовой вероятности обструктивных и необструктивных поражений коронарного русла. Российский кардиологический журнал. 2020;25(5): 99–105. [Gel’cer B.I., Civanjuk M.M., Shahgel’djan K.I., Rublev V.Ju. Machine learning methods in assessing the pretest probability of obstructive and non-obstructive coronary lesions// Russian Journal of Cardiology. 2020;25(5):99–105. (In Russian)]. DOI: 10.15829/1560-4071-2020-3802

15. Новиков Е.М., Стеблецов С.В., Ардашев В.Н., Кириллова Т.Б., Тарабарина Н.Б. Методы исследования сердечного ритма по данным ЭКГ: вариабельность сердечного ритма и дисперсионное картирование (обзорная статья). Кремлевская медицина. Клинический вестник. 2019;4:81–89. [Novikov E.M., Steblecov S.V., Ardashev V.N., Kirillova T.B., Tarabarina N.B. ECG-based investigation methods: heart rate variability and dispersion mapping (Literature article). Kremlin Medicine. Clinical Bulletin. 2019;4:81–89. (In Russian)]. DOI 10.26269/4t6g-mx35

16. Gilad O., Swenne C.A., Davrath L.R., Akselrod S. Phase-averaged characterization of respiratory sinus arrhythmia pattern. Am. J. Physiol. Heart Circ. Physiol. 2005;288(2):504–510. DOI: 10.1152/ajpheart.00366.2004

17. Sinnreich R., Kark J.D., Friedlander Y., Sapoznikov D., Luria M.H. Five minute recordings of heart rate variability for population studies: repeatability and age-sex characteristics. Heart. 1998;80(2):156–162. DOI: 10.1136/hrt.80.2.156


Review

For citations:


Maslennikova O.M., Ardashev V.N., Novikov E.M., Stepanov M.M., Stebletsov S.V., Kirillova T.B., Tarabarina N.B., Perets E.M., Fursov A.N. Assessment of the pre-test probability of ischemic heart disease according to the data of dispersion mapping of an electrocardiogram and analysis of heart rate variability. Clinical Medicine (Russian Journal). 2022;100(4-5):178-184. (In Russ.) https://doi.org/10.30629/0023-2149-2022-100-4-5-178-184

Views: 1165


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)