Preview

Clinical Medicine (Russian Journal)

Advanced search

Recurrent course of post-inflammatory cardiopathy: lessons from past epidemics

https://doi.org/10.30629/0023-2149-2022-100-2-3-97-107

Abstract

Viruses are the most common etiological agents of myocardium inflammation. Today the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV-2) causes a high incidence of myocarditis and pericarditis. As a hypothetical scenario, we present a clinical case of a patient who underwent viral myocarditis on the background of SARS in 2004, with recurrent myocarditis in ARVI, the last of which was initiated by SARS-CoV-2. A 61-year-old male patient, in 2004 contacted a representative of the People's Republic of China and after 4 days felt the symptoms of ARVI. Before the viral disease, he had excellent health, the absence of cardiovascular diseases and pathological heredity. Fever 38–39 °C, myalgia, headache, general malaise, dry obsessive cough persisted for a week. After the addition of shortness of breath, he was hospitalized. According to the data of X-ray and computed tomography, infiltrates of the lungs of both of the "frosted glass" type were revealed. According to the clinic and laboratory data, a diagnosis of severe “atypical viral pneumonia” was made, and a diagnosis of viral myocarditis was suggested. Echocardiography showed a decrease in the left ventricular ejection fraction up to 50% for the first time, without signs of coronary heart disease based on the results of further examination. Dry cough disturbed in the next 4 months, LVEF 48–50% and 1 functional class of heart failure persisted for 10 years. The patient had a flu with mild respiratory symptoms in 2015, but it triggered a recurrence of myocarditis. The examination revealed a decrease in LVEF up to 35%, the progression of dilatation of the heart cavities also without signs of coronary heart disease according to the results of the treadmill test and coronary angiography. Post-inflammatory cardiopathy progressed relatively quickly during the year. The minimum LVEF was 23%; a cardioverter-defibrillator was implanted for secondary indications; radiofrequency ablation of fascicular tachycardia was performed. It was followed by another period of stabilization: 2 functional class of heart failure, ICD shocks did not occur. The patient underwent COVID-19 with minimal respiratory symptoms in March 2021. It provoked another recurrence of myocarditis, diagnosed with an increase in troponin, cerebral natriuretic peptide, CRP, ESR and increasing heart failure during 3 months. Persistent paroxysms of atrial fibrillation with a decrease of LVEF 15% and anasarсa. A successful radiofrequency isolation of the pulmonary vein was performed in 2021. By November 2021, in the absence of paroxysms, it was possible to achieve compensation for heart failure up to class 1 according to Vasilenko–Strazhesko and NYHA, LVEF 28%.

In order to understand the recurrent nature of myocarditis against the background of various respiratory viral infections, an analysis of the literature was carried out, including the described cases of myocardial inflammation against the background of the predecessors of the SARS-CoV-2 strain: SARS-CoV-1 and MERS. We also reviewed the data on the diagnosis of viral myocarditis in the realities of this pandemic. It reveals a large heterogeneity of signs of inflammation of the heart muscle according to different diagnostic methods and large interobserver variability, and challenges us about the need to revise the criteria for myocarditis in the case of COVID-19.

About the Authors

Z. N. Sukmarova
Central Military Clinical Hospital named after Mandrykа P.V. of the Ministry of Defense of Russia
Russian Federation

Sukmarova Zulfiya N.

107014, Moscow



F. M. Ibragimova
Central Military Clinical Hospital named after Mandrykа P.V. of the Ministry of Defense of Russia
Russian Federation

Ibragimova Firuza M.

107014, Moscow



O. V. Afonina
Central Military Clinical Hospital named after Mandrykа P.V. of the Ministry of Defense of Russia
Russian Federation

Afonina Olga V.

107014, Moscow



V. B. Simonenko
Military Medical Academy named after Kirov S.M. (Moscow Branch) of the Ministry of Defense of Russia
Russian Federation

Simonenko Vladimir B.

107392, Moscow



References

1. Ammirati E., Frigerio M., Adler E.D. et al. Management of Acute Myocarditis and Chronic Inflammatory Cardiomyopathy. An Expert Consensus Document. Circulation: Heart Failure. 2020;13:e007405. DOI: 10.1161/CIRCHEARTFAILURE.120.007405

2. Coronavirus never before seen in humans is the cause of SARS. United Nations World Health Organization. 2006-04-16. Retrieved 2006-07-05.

3. Cherry J.D. The chronology of the 2002-2003 SARS mini pandemic. Paediatr. Respir. Rev. 2004;5(4):262–9. DOI: 10.1016/j.prrv.2004.07.009

4. Sørensen M.D., Sørensen B., Gonzalez-Dosal R. et al. Severe acute respiratory syndrome (SARS): development of diagnostics and antivirals. Ann. N.-Y. Acad. Sci. 2006;1067(1):500–505. DOI: 10.1196/annals.1354.072

5. World Health Organization. URL: https://applications.emro.who.int/docs/EMROPub-MERS-SEP-2019-EN.pdf?ua=1&ua=1

6. Assiri A., McGeer A., Trish M. et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N. Engl. J. Med. 2013;369:407–16. DOI: 10.1056/NEJMoa1306742

7. Alexander L.K., Keene B.W., Small J.D. et al. Electrocardiographic changes following rabbit coronavirus-induced myocarditis and dilated cardiomyopathy. Adv. Exp. Med. Biol. 1993;342:365–370. DOI: 10.1007/978-1-4615-2996-5_56

8. Oh M.D., Park W.B., Park S.W. et al. Middle East respiratory syndrome: what we learned from the 2015 outbreak in the Republic of Korea. Korean J. Intern. Med. 2018;33(2):233–246. DOI: 10.3904/kjim.2018.031

9. Zhang A.R., Shi W.Q., Liu K. et al. Epidemiology and evolution of Middle East respiratory syndrome coronavirus, 2012–2020. Infect. Dis. Poverty. 2021;10:66. DOI: 10.1186/s40249-021-00853-0

10. McIntosh K., Perlman S. Coronaviruses, Including Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). Mandell, Douglas, and Bennett's. Principles and Practice of Infectious Diseases. 2015;1928–1936.e2. DOI: 10.1016/B978-1-4557-4801-3.00157-0

11. Wu Z. and McGoogan J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;2648. DOI: 10.1001/jama.2020.2648

12. Moldofsky H., Patcai J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol. 2011;11:37. DOI: 10.1186/1471-2377-11-37

13. Yu C.M., Wong R.S., Wu E.B. et al. Cardiovascular complications of severe acute respiratory syndrome. Postgrad. Med. J. 2006;82(964):140–4. DOI: 10.1136/pgmj.2005.037515

14. Li S.S., Cheng C.W., Fu C.L. Left ventricular performance in patients with severe acute respiratory syndrome: a 30-day echocardiographic follow-up study. Circulation. 2003;108(15):1798–1803. DOI: 10.1161/01.CIR.0000094737.21775.32

15. Alhogbani T. Acute myocarditis associated with novel Middle east respiratory syndrome coronavirus. Ann. Saudi Med. 2016;36:78–80. DOI: 10.5144/0256-4947.2016.78

16. Huang C.H., Vallejo J.G., Kollias G. & Mann D.L. Role of the innate immune system in acute viral myocarditis. Basic. Res. Cardiol. 2009;104:228–237. DOI: 10.1007/s00395-008-0765-5

17. Heymans S., Eriksson U., Lehtonen J. & Cooper, L.T.Jr. The quest for new approaches in myocarditis and inflammatory cardiomyopathy. J. Am. Coll. Cardiol. 2016;68:2348–2364. DOI: 10.1016/j.jacc.2016.09.937

18. Muller I. et al. Serum alarmin S100A8/S100A9 levels and its potential role as biomarker in myocarditis. ESC Heart Fail. 2020;7:1442–1451. DOI: 10.1002/ehf2.12760

19. Malkiel S., Kuan A.P., Diamond B. Autoimmunity in heart disease: mechanisms and genetic susceptibility. Mol. Med. Today. 1996;2:336–342. DOI: 10.1016/1357-4310(96)81799-0

20. Huber S.A., Gauntt C.J., Sakkinen P. Enteroviruses and myocarditis: viral pathogenesis through replication, cytokine induction, and immunopathogenicity. Adv. Virus. Res. 1998;51:35–80. DOI: 10.1016/S0065-3527(08)60783-6

21. Klingel K., Hohenadl C, Canu A. et al. Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation. Proc. Natl. Acad. Sci. USA 1992;89:314–318. DOI: 10.1073/pnas.89.1.314

22. Caraffa R., Marcolongo R., Bottio T. et al. Recurrent autoimmune myocarditis in a young woman during the coronavirus disease 2019 pandemic. ESC Heart Fail. 2021Feb;8(1):756–760. DOI: 10.1002/ehf2.13028

23. Caforio A.L. et al. A prospective study of biopsy-proven myocarditis: prognostic relevance of clinical and aetiopathogenetic features at diagnosis. Eur. Heart J. 2007;28: 1326–1333. DOI: 10.1093/eurheartj/ehm076

24. Tschöpe C., Ammirati E., Bozkurt B. et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat. Rev. Cardiol. 2021;18(3):169–193. DOI: 10.1038/s41569-020-00435-x

25. Li Y., Heuser J.S, Cunningham L.C., et al. Mimicry and anti-body-mediated cell signaling in autoimmune myocarditis. J. Immunol. 2006;177:8234–8240. DOI: 10.4049/jimmunol.177.11.8234

26. Alexander L.K., Small J.D, Edwards S. and Baric R.S. An experimental model for dilated cardiomyopathy after rabbit coronavirus infection. J. Infect. Dis. 1992;166:978–85. DOI: 10.1093/infdis/166.5.978

27. Platz E., Jhund P.S., Claggett B.L. et al. Prevalence and prognostic importance of precipitating factors leading to heart failure hospitalization: recurrent hospitalizations and mortality. Eur. J. Heart Fail. 2018;20:295–303. DOI: 10.1002/ejhf.901

28. Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 28;395(10229):1054–1062. DOI: 10.1016/S0140-6736(20)30566-3

29. Wang D., Hu B., Hu C. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. DOI: 10.1001/jama.2020.1585

30. Lala A., Johnson K.W., Januzzi J.L. et al. Prevalence and Impact of Myocardial Injury in Patients Hospitalized With COVID-19 Infection. J. Am. Coll. Cardiol. 2020;76:533–546. DOI: 10.1016/j.jacc.2020.06.007

31. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. DOI: 10.1016/S0140-6736(20)30183-5

32. Irabien-Ortiz Á., Carreras-Mora J., Sionis A. et al. Fulminant myocarditis due to COVID-19. Rev. Esp. Cardiol. 2020;73:503–504. DOI: 10.1016/j.recesp.2020.04.001

33. Paul J-F., Charles P., Richaud C. et al. Myocarditis revealing COVID-19 infection in a young patient. Eur. Heart J. Cardiovasc. Imaging. 2020;21:776. DOI: 10.1093/ehjci/jeaa107

34. Tomasoni D., Italia L., Adamo M. et al. COVID-19 and heart failure: from infection to inflammation and angiotensin II stimulation. Searching for evidence from a new disease. Eur. J. Heart. Fail. 2020;22(6):957–966. DOI: 10.1002/ejhf.1871

35. Shi S., Qin M., Shen B. et al. Cardiac injury in patients with corona virus disease 2019. JAMA Cardiol. 2020;5(7):802–810. DOI: 10.1001/jamacardio.2020.0950

36. Guo T., Fan Y., Chen M. et al. Association of cardiovascular disease and myocardial injury with outcomes of patients hospitalized with 2019-coronavirus disease (COVID-19). JAMA Cardiol. 2020;1017. DOI: 10.1001/jamacardio.2020.1017

37. Madjid M., Safavi-Naeini P., Solomon S.D., Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020;5(7):831–840. DOI: 10.1001/jamacardio.2020.1286

38. Atri D., Siddiqi H.K., Lang J.P. et al. COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. JACC Basic to Transl. Sci. 2020;5:518–536. DOI: 10.1016/j.jacbts.2020.04.002

39. Akhmerov A., Marbán E. COVID-19 and the Heart. Circ. Res. 2020;126:1443–1455. DOI: 10.1161/CIRCRESAHA.120.317055

40. Pericàs J.M., Hernandez-Meneses M., Sheahan T.P. et al. COVID-19: from epidemiology to treatment. Eur. Heart J. 2020;41:2092–2112. DOI: 10.1093/eurheartj/ehaa462

41. Tersalvi G., Vicenzi M., Calabretta D. et al. Elevated Troponin in Patients With Coronavirus Disease 2019: Possible Mechanisms. J. Card. Fail. 2020;26:470–475. DOI: 10.1016/j.cardfail.2020.04.009

42. Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–1418. DOI: 10.1016/S0140-6736(20)30937-5

43. Caforio A.L.P., Pankuweit S., Arbustini E. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013;34:2636–2648. DOI: 10.1093/eurheartj/eht210

44. Lindner D., Fitzek A., Bräuninger H. et al. Association of Cardiac Infection With SARS-CoV-2 in Confi rmed COVID-19 Autopsy Cases. JAMA Cardiol. 2020;5:1281–1285. DOI: 10.1001/jamacardio.2020.3551

45. Xu Z., Shi L., Wang Y. et al. Pathological fi ndings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420-422. DOI: 10.1016/S2213-2600(20)30076-X

46. Kawakami R., Sakamoto A., Kawai K. et al. Pathological Evidence for SARS-CoV-2 as a Cause of Myocarditis: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2021;77(3):314–325. DOI: 10.1016/j.jacc.2020.11.031

47. Zhou R. Does SARS-CoV-2 cause viral myocarditis in COVID-19 patients? Eur. Heart J. 2020;41(22):2123. DOI: 10.1093/eurheartj/ehaa392

48. Kim I.C., Kim J.Y., Kim H.A. and Han S. COVID-19-related myocarditis in a 21-year-old female patient. Eur. Heart J. 2020;41(19):1859. DOI: 10.1093/eurheartj/ehaa288

49. Sala S., Peretto G., Gramegna M. et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur. Heart J. 2020;41(19):1861–1862. DOI: 10.1093/eurheartj/ehaa286

50. Oudit G.Y., Kassiri Z., Jiang C. et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur. J. Clin. Invest. 2009;39(7):618–625. DOI: 10.1111/j.1365-2362.2009.02153

51. Peretto G., Sala S. and Caforio A.L.P. Acute myocardial injury, MINOCA, or myocarditis? Improving characterization of coronavirus-associated myocardial involvement. Eur. Heart J. 2020;41(22):2124–2125. DOI: 10.1093/eurheartj/ehaa396

52. Dong N., Cai J., Zhou Y. et al. End-Stage Heart Failure With COVID-19: Strong Evidence of Myocardial Injury by 2019-nCoV. JACC Heart Fail. 2020;8(6):515–517. DOI: 10.1016/j.jchf.2020.04.001

53. Inciardi R.M., Lupi L., Zaccone G. et al. Cardiac Involvement in a Patient with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020Jul1;5(7):819–824. DOI: 10.1001/jamacardio.2020.1096

54. Tavazzi G., Pellegrini C., Maurelli M. et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur. J. Heart Fail. 2020;22(5):911–915. DOI: 10.1002/ejhf.1828

55. Zeng J.H., Liu Y.X., Yuan J. et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection. 2020;48(5):773–777. DOI: 10.1007/s15010-020-01424-5

56. Libby P., Nahrendorf M., Swirski F.K. Leukocytes link local and systemic inflammation in ischemic cardiovascular disease: an expanded “cardiovascular continuum” J. Am. Coll. Cardiol. 2016;67:1091–1103. DOI: 10.1016/j.jacc.2015.12.048

57. Guan W., Ni Z., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020;382:1708–1720. DOI: 10.1056/NEJMoa2002032

58. Pan Y., Zhang D., Yang P. et al. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 2020;20:411–412. DOI: 10.1016/S1473-3099(20)30113-4

59. Cao X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol. 2020;20:269–270. DOI: 10.1038/s41577-020-0308-3

60. Feldstein L.R., Rose E.B., Horwitz S.M. et al. Overcoming COVID-19 Investigators; CDC COVID-19 Response Team. Multisystem inflammatory syndrome in U.S. children and adolescents. N. Engl. J. Med. 2020;383:334–346. DOI: 10.1056/NEJMoa2021680

61. Zhao X., Nicholls J.M., Chen Y.G. Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor?beta signaling. J. Biol. Chem. 2008;283:3272–80. DOI: 10.1074/jbc.M708033200

62. Puntmann V.O., Carerj M.L., Wieters I. et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265–1273. DOI: 10.1001/jamacardio.2020.3557

63. Clark D.E., Parikh A., Dendy J.M. et al. COVID?19 Myocardial Pathology Evaluation in AthleTEs with Cardiac Magnetic Resonance (COMPETE CMR). Circulation. 2021;143(6):609–612. DOI: 10.1161/CIRCULATIONAHA.120.052573

64. Małek Ł.A., Marczak M., Miłosz-Wieczorek B. et al. Cardiac involvement in consecutive elite athletes recovered from Covid-19: A magnetic resonance study. J. Magn. Reson. Imaging. 2021;53(6):1723–1729. DOI: 10.1002/jmri.27513

65. Huang L., Zhao P., Tang D. et al. Cardiac involvement in patients recovered from COVID-2019 identifi ed using magnetic resonance imaging. JACC Cardiovasc. Imaging. 2020;13:2330–9. DOI: 10.1016/j.jcmg.2020.05.004

66. Sukmarova Z.N., Potapov E.V., Ovchinnikov Yu.V., Saidova M.A., Gromov A.I. Ultrasound fi ndings and comparisons of pericardial changes in post-COVID-19 patients: a prospective study. Ultra sonic and functional diagnostics. 2021;4. (In Russian)

67. Furqan M.M., Verma B.R., Cremer P.C., Imazio M., Klein A.L. Pericardial Diseases in COVID19: a Contemporary Review. Curr. Cardiol. Rep. 2021;23(7)90. DOI: 10.1007/s11886-021-01519-x

68. Siripanthong B., Nazarian S., Muser D. et al. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020;17(9):1463–1471. DOI: 10.1016/j.hrthm.2020.05.001

69. Kotecha T., Knight D.S., Razvi Y. et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur. Heart J. 2021;42(19):1866–1878. DOI: 10.1093/eurheartj/ehab075

70. Moulson N., Petek B.J., Drezner J.A. SARS-CoV-2 cardiac involvement in young competitive athletes. Circulation. 2021;144:256–266. DOI: 10.1161/CIRCULATIONAHA.121.054824

71. Lavie C.J., Sanchis-Gomar F., Lippi G. Cardiac injury in COVID-19-echoing prognostication. J. Am. Coll. Cardiol. 2020;76(18):2056–9 PMID: 33121711. DOI: 10.1016/j.jacc.2020.08.068

72. Szekely Y., Lichter Y., Taieb P. et al. Spectrum of cardiac manifestations in COVID-19: a systematic echocardiographic study. Circulation. 2020;142(4):342–53. DOI: 10.1161/CIRCULATIONAHA.120.047971

73. Cooper L.T. Myocarditis. N. Engl. J. Med. 2009;360:1526–1538. DOI: 10.1056/NEJMra0800028.

74. Remes J., Helin M., Vaino P., Rautio P. Clinical outcome and left ventricular function 23 years after acute coxsackie virus myopericarditis. Eur. Heart J. 1990;11:182–188. DOI: 10.1093/oxfordjournals.eurheartj.a059675

75. Peters N.S., Poole-Wilson P.A. Myocarditiscontinuing clinical and pathologic confusion. Am. Heart J. 1991;121:942–947. DOI: 10.1016/0002-8703(91)90221-3

76. Nemickas R., Fishman D., Killip T. et al. Clinical pathologic conference: massive myocardial necrosis in a young woman. Am. Heart J. 1978;95:766–774DOI: 10.1016/0002-8703(78)90509-4

77. Sobel B., Sagel S., McKeel D. Shock and death in a 43-year-old woman. Am. J. Med. 1985;79:245–252. DOI: 10.1016/0002-9343(85)90016-6

78. Fenoglio J.J. Jr., Ursell P.C., Kellogg C.F. et al. Diagnosis and classification of myocarditis by endomyocardial biopsy. N. Engl. J. Med. 1983;308:12–18. DOI: 10.1056/NEJM198301063080103

79. Quigley P.J., Richardson P.J., Meany B.T. et al. Long-term follow-up of acute myocarditis: correlation of ventricular function and outcome. Eur. Heart J. 1987;8:Suppl J:39-42.

80. Dec GW Jr., Palacios I.F., Fallon J.T. et al. Active myocarditis in the spectrum of acute dilated cardiomyopathies: clinical features, histologic correlates, and clinical outcome. N. Engl. J. Med. 1985;312:885–890

81. McCarthy R.E., Boehmer J.P., Hruban R.H. et al. Long-term out-come of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. N. Engl. J. Med. 2000;342:690–695. DOI: 10.1056/NEJM200003093421003

82. Rockman H.A., Adamson R.M., Dembitsky W.P. et al. Acute fulminant myocarditis: long-term follow-up after circulatory support with left ventricular assist device. Am. Heart J. 1991;121:922–926.

83. Chang A.C., Hanley F.L., Weindling S.N. et al. Left heart support with a ventricular assist device in an infant with acute myocarditis. Crit. Care Med. 1992;20:712–715.

84. Jett G.K., Miller A., Savino D., Gonwa T. Reversal of acute fulminant lymphocytic myocarditis with combined technology of OKT3 monoclonal antibody and mechanical circulatory support. J. Heart Lung. Transplant. 1992;11:733–738.

85. Yasu T., Murata S., Katsuki T. et al. Acutely severe myocarditis successfully treated by percutaneous cardiopulmonary support applied by a newly developed heparin-binding oxygenator and circuits. Jpn. Circ. J. 1997;61:1037–1042.

86. Grogan M., Redfi eld M.M., Bailey K.R et al. Long-term outcome of patients with biopsy-proved myocarditis: comparison with idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 1995;26:80–84.

87. Mason J.W., O'Connell J.B., Herskowitz A. et al. A clinical trial of immunosuppressive therapy for myocarditis. N. Engl. J. Med. 1995;333:269–275.

88. Tschope C., Cooper L.T., Torre-Amione. G. & Van Linthout, S. Management of myocarditis-related cardiomyopathy in adults. Circ. Res. 2019;124:1568–1583. DOI: 10.1161/CIRCRESAHA.118.313578

89. Ammirati E., Cipriani M., Moro C. et al. Clinical Presentation and Out-come in a Contemporary Cohort of Patients with Acute Myocarditis: Multicenter Lombardy Registry. Circulation. 2018;138(11):1088– 1099. DOI: 10.1161/CIRCULATIONAHA.118.035319

90. Ho J.S., Sia C.H., Chan M.Y., Lin W., Wong R.C. Coronavirus-induced myocarditis:

91. A meta-summary of cases. Heart Lung. 2020;49(6):681–5. DOI: 10.1016/j.hrtlng.2020.08.013

92. Shah S., Danda D., Kavadichanda C. et al. Autoimmune and rheumatic musculoskeletal diseases as a consequence of SARS-CoV-2 infection and its treatment. Rheumatol. Int. 2020;40(10):1539–1554. DOI: 10.1007/s00296-020-04639-9

93. Nasonov E.L. Coronavirus disease 2019 (COVID-19): refl ections from a rheumatologist. Scientific and practical rheumatology. 2020;58(2):123–132. (In Russian). DOI: 10.14412/1995-4484-2020-123-132

94. Musikantow D.R., Turagam M.K., Sartori S. et al. Atrial Fibrillation in Patients Hospitalized With COVID-19: Incidence, Predictors, Outcomes, and Comparison to Infl uenza. JACC Clin Electrophysiol. 2021;7(9):1120–1130. DOI: 10.1016/j.jacep.2021.02.009

95. Ukimura A., Izumi T., Matsumori A. Clinical research committee on myocarditis associated with 2009 infl uenza A (H1N1) pandemic in Japan organized by Japanese circulation Society. A national survey on myocarditis associated with the 2009 influenza A (H1N1) pandemic in Japan. Circ. J. 2010;74(10):2193–9. DOI: 10.1253/circj.cj-10-0452

96. Guo T., Fan Y., Chen M. et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811–818. DOI: 10.1001/jamacardio.2020.1017

97. Raman B., Cassar M.P., Tunnicliffe E.M. et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. E. Clinical. Medicine. 2021;31:100683. DOI: 10.1016/j.eclinm.2020.100683


Review

For citations:


Sukmarova Z.N., Ibragimova F.M., Afonina O.V., Simonenko V.B. Recurrent course of post-inflammatory cardiopathy: lessons from past epidemics. Clinical Medicine (Russian Journal). 2022;100(2-3):97-107. (In Russ.) https://doi.org/10.30629/0023-2149-2022-100-2-3-97-107

Views: 668


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)