Preview

Клиническая медицина

Расширенный поиск

Значение копептина в диагностике и прогнозе течения сердечно-сосудистых заболеваний

https://doi.org/10.30629/0023-2149-2020-98-3-203-209

Полный текст:

Аннотация

Вазопрессин и его рецепторы играют ключевую роль в поддержании гомеостаза организма в физиологических и патофизиологических условиях. Как следствие, вазопрессиновая система стала важной мишенью как для диагностического, так и для терапевтического применения при ряде заболеваний. Копептин — С-концевая часть прогормона вазопрессина. Копептин стал рассматриваться как важный маркер для выявления пациентов с высоким риском и прогнозирования результатов при различных заболеваниях. Это улучшает клиническую ценность обычно используемых биомаркеров и инструментов стратификации риска. Область, которая могла бы извлечь наибольшую пользу от введения измерения копептина на практике, — это сердечно-сосудистые заболевания. Определение уровня копептина становится быстрым и надежным методом дифференциальной диагностики, особенно при острых коронарных синдромах. Особая роль в диагностике острого инфаркта миокарда (ОИМ) отводится комбинации копептина и тропонина. Согласно доступным источникам, такая комбинация позволяет исключить ОИМ с очень высокой чувствительностью и отрицательным прогностическим значением. Более того, повышенный уровень копептина коррелирует с худшим прогнозом, и становится более высоким риск развития побочных эффектов после ОИМ, особенно у пациентов с сердечной недостаточностью.

Об авторах

А. М. Алиева
ФГАОУ ВО «Российский национальный-исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия
117997, Москва


И. И. Алмазова
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
Россия
125993, Москва


Т. В. Пинчук
ФГАОУ ВО «Российский национальный-исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Пинчук Татьяна Витальевна — канд. мед. наук, доцент кафедры факультетской терапии педиатрического факультета

117997, Москва



Е. В. Резник
ФГАОУ ВО «Российский национальный-исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия
117997, Москва


Ю. Н. Федулаев
ФГАОУ ВО «Российский национальный-исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия
117997, Москва


И. Г. Никитин
ФГАОУ ВО «Российский национальный-исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия
117997, Москва


Список литературы

1. Morgenthaler N.G., Struck J., Jochberger S. et al. Copeptin: clinical use of a new biomarker. Trends in Endocrinology and Metabolism. 2007;19(2):43–49.

2. Turner R.A., Pierce J.G., Du Vigneaud V. The purification and the amino acid content of vasopressin preparations. J. Biol Chem. 1951; 191:21–28.

3. Zelena D. Comparison of natural and artificial vasopressin deficiency: why the latter is lethal? Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding. 2016;20(2):228–233. doi: 10.18699/VJ16.142.

4. Morgenthaler N.G. Copeptin: A Biomarker of Cardiovascular and Renal Function. Congest Heart Fail. 2010;16(4):37–44.

5. Brown D., Nielsen S. Cell biology of vasopressin action. In: Brenner B.M., ed, editors. Brenner and rector’s the kidney. 8th ed. Philadelphia, PA: Saunders; 2007.

6. Chatterjee K. Neurohormonal activation in congestive heart failure and the role of vasopressin. Am. J. Cardiol. 2005;(2);95(9A): 8B–13B.

7. Thibonnier M., Preston J.A., Dulin N. et al. The human V3 pituitary vasopressin receptor: ligand binding profile and density-dependent signaling pathways. Endocrinology. 1997;138:4109–4122.

8. Zelena D. Comparison of natural and artificial vasopressin deficiency: why the latter is lethal? Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding. 2016;20(2):228–233. doi: 10.18699/VJ16.142.

9. Birnbaumer M. Vasopressin receptors. Trends Endocrinol. Metab. 2000;11:406–410.

10. Wilson J.L., Miranda C.A., Knepper M.A. Vasopressin and the regulation of aquaporin-2. Clinical and experimental nephrology. 2013; 17(6):751–764. doi: 10.1007/s10157-013-0789-5].

11. Peter J., Burbach H., Adan R.A. et al. Molecular neurobiology and pharmacology of the vasopressin/oxytocin receptor family. Cell. Mol. Neurobiol. 1995;15:573–595.

12. Thibonnier M., Conarty D.M., Preston J.A. et al. Human vascular endothelial cells express oxytocin receptors. Endocrinology. 1999; 140:1301–1309.

13. Zenteno-Savin T., Sada-Ovalle I., Ceballos G., Rubio R. Effects of arginine vasopressin in the heart are mediated by specific intravascular endothelial receptors. Eur. J. Pharmacol. 2000;410:15–23.

14. Ring R.H. The central vasopressinergic system: examining the opportunities for psychiatric drug development. Curr. Pharm. Design. 2005;11:205–225.

15. Goldsmith S.R. Baroreflex loading maneuvers do not suppress increased plasma arginine vasopressin in patients with congestive heart failure. J. Am. Coll. Cardiol. 1992;19(6):1180–4. doi: 10.1016/0735- 1097(92)90321-D.

16. Klein L., O’Connor C.M., Leimberger J.D., Gattis-Stough W., Piña I.L., Felker G.M., Adams K.F., Califf R.M., Gheorghiade M. Lower serum sodium is associated with increased short-term mortality in hospitalized patients with worsening heart failure: results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF) study. Circulation. 2005;111:2454–2460.

17. Zelena D. Vasopressin in health and disease with a focus on affective disorders. Central Nervous Syst. Agents Med. Chem. 2012;12: 286–303.

18. Koshimizu T.A., Nakamura K., Egashira N. et al. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol. Rev. 2012;92(4):1813–1864.

19. Guillon G., Grazzini E., Andrez M. et al. Vasopressin: a potent autocrine/paracrine regulator of mammal adrenal functions. Endocr. Res. 1998;24(3–4):703–710.

20. Mavani G.P., De Vita M.V., Michelis M.F. A review of the nonpressor and nonantidiuretic actions of the hormone vasopressin. Front. Med. (Lausanne). 2015;2:ID 19.

21. Ahn D.K., Kim K.H., Ju J.S., Kwon S., Park J.S. Microinjection of arginine vasopressin into the central nucleus of amygdala suppressed nociceptive jaw opening reflex in freely moving rats. Brain Res Bull. 2001;55(1):117–21. doi:10.1016/S0361-9230(01)00493-2.

22. Tamma R., Sun L., Cuscito C., Lu P., Corcelli M., Li J., Colaianni G., Moonga S.S., Di Benedetto A., Grano M., Colucci S., Yuen T., New M.I., Zallone A., Zaidi M. Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia. Proc. Natl. Acad. Sci. USA. 2013;110:18644–18649.

23. Sejling A., Pedersen-Bjergaard U., Eiken P. Syndrome of inappropriate ADH secretion and severe osteoporosis. J. Clin. Endocrinol. Metab. 2012;97(12):4306–4310.

24. Pasquali R., Gagliardi L., Vicennati V., Gambineri A., Colitta D., Ceroni L. et al. ACTH and cortisol response to combined corticotropin releasing hormone-arginine vasopressin stimulation in obese males and its relationship to body weight, fat distribution and parameters of the metabolic syndrome. Int. J. Obes. Relat. Metab. Disord. 1999;23 (4):419–24. doi: 10.1038/sj.ijo.0800838.

25. Enhörning S., Wang T.J., Nilsson P.M., Almgren P., Hedblad B., Berglund G. et al. Plasma copeptin and the risk of diabetes mellitus. Circulation. 2010;121(19):2102–8. doi: 10.1161/CIRCULATIONAHA.109.909663.

26. Saleem U., Khaleghi M., Morgenthaler N.G. et al. Plasma carboxy-terminal provasopressin (copeptin): a novel marker of insulin resistance and metabolic syndrome. J. Clin. Endocrinol. Metab. 2009;94(7):2558–2264.

27. Koshimizu T.A., Nakamura K., Egashira N. et al. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol. Rev. 2012;92(4):1813–1864.

28. Yibchok-anun S., Abu-Basha E.A., Yao C.Y., Panichkriangkrai W., Hsu W.H. The role of arginine vasopressin in diabetes-associated increase in glucagon secretion. Regul Pept. 2004;122(3):157–62. doi:10.1016/j.regpep.2004.06.010.

29. Saleem U., Khaleghi M., Morgenthaler N.G. et al. Plasma carboxy-terminal provasopressin (copeptin): a novel marker of insulin resistance and metabolic syndrome. J. Clin. Endocrinol. Metab. 2009;94(7):2558–2264.

30. Koshimizu T.A., Nakamura K., Egashira N., Hiroyama M., Nonoguchi H., Tanoue A. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev. 2012;92(4):1813–64. doi: 10.1152/physrev.00035.2011.

31. Nakajima A., Lu Y., Kawano H. et al. Association of arginine vasopressin surrogate marker urinary copeptin with severity of autosomal dominant polycystic kidney disease (ADP KD). Clin. Exp. Nephrol. 2015;19(6):1199–1205.

32. Bardoux P., Bruneval P., Heudes D. et al. Diabetes-induced albuminuria: role of antidiuretic hormone as revealed by chronic V2 receptor antagonism in rats. Nephrol. Dial. Transplant. 2003;18(9): 1755–1763.

33. Tahara A., Tsukada J., Tomura Y., Yatsu T., Shibasaki M. Vasopressin regulates rat mesangial cell growth by inducing autocrine secretion of vascular endothelial growth factor. J. Physiol. Sci. 2011;61: 115–122.

34. Hiroyama M., Wang S., Aoyagi T., Oikawa R., Sanbe A., Takeo S., Tanoue A. Vasopressin promotes cardiomyocyte hypertrophy via the vasopressin V1a receptor in neonatal mice. Eur. J. Pharmacol. 2007; 559:89–97.

35. Thibonnier M., Plesnicher C.L., Berrada K., Berti-Mattera L. Role of the human V1 vasopressin receptor COOH terminus in internalization and mitogenic signal transduction. Am. J. Physiol. Endocrinol. Metab. 2001;281(1):E81–92.

36. Tahara A., Tsukada J., Tomura Y. et al. Vasopressin increases type IV collagen production through the induction of transforming growth factor-beta secretion in rat mesangial cells. Pharmacol. Res. 2008; 57(2):142–150.

37. Chen J., Aguilera G. Vasopressin protects hippocampal neurones in culture against nutrient deprivation or glutamate-induced apoptosis. J. Neuroendocrinol. 2010;22:1072–1081.

38. Serriere V., Tran D., Stelly N., Claret M., Alonso G., Tordjmann T., Guillon G. Vasopressin-induced morphological changes in polarized rat hepatocyte multiplets: dual calcium-dependent effects. Cell Calcium. 2008;43:95–104.

39. Forti F.L., Armelin H.A. Arginine vasopressin controls p27(Kip1) protein expression by PKC activation and irreversibly inhibits the proliferation of K-Ras-dependent mouse Y1 adrenocortical malignant cells. Biochim. Biophys. Acta. 2011;1813:1438–1445.

40. Mayer B., Németh K., Krepuska M., Myneni V.D., Maric D., Tisdale J.F., Mezey É. Vasopressin stimulates the proliferation and differentiation of red blood cell precursors and improves recovery from anemia. Science translational medicine. 2017;9(418):eaao1632. doi: 10.1126/scitranslmed.aao1632.

41. Quintanar-Stephano A., Organista-Esparza A., Chavira-Ramirez R., Kovacs K., Berczi I. Effects of neurointermediate pituitary lobectomy and desmopressin on acute experimental autoimmune encephalomyelitis in lewis rats. Neuroimmunomodulation. 2012;19: 148–157.

42. Chang Y.Y., Yang C.H., Wang S.C. et al. Vasopressin inhibits endotoxin binding in activated macrophages. J. Surg. Res. 2015;197(2): 412–8. doi: 10.1016/j.jss.2015.04.042.

43. Chikanza I.C., Grossman A.S. Hypothalamic-pituitary-mediated immunomodulation: arginine vasopressin is a neuroendocrine immune mediator. Br. J. Rheumatol. 1998;37(2):131–136.

44. Tsuji T., Allchorne A.J., Zhang M., Tsuji C., Tobin V.A., Pineda R., Raftogianni A., Stern J.E., Grinevich V., Leng G., Ludwig M. Vasopressin casts light on the suprachiasmatic nucleus. J. Physiol. 2017;595(11):3497–3514.

45. Carson D.S., Garner J.P., Hyde S.A., Libove R.A., Berquist S.W., Hornbeak K.B., Parker K.J. Arginine Vasopressin Is a Blood-Based Biomarker of Social Functioning in Children with Autism. PloS one. 2015;10(7):e0132224.

46. Wacker D., Ludwig M. The role of vasopressin in olfactory and v isual processing. Cell. and tissue research. 2019;375(1):201–215. doi:10.1007/s00441-018-2867-1.

47. Preibisz J.J., Sealey J.E., Laragh J.H. et al. Plasma and platelet vasopressin in essential hypertension and congestive heart failure. Hypertension. 1983;5:1129–38.

48. Kokorin V.A., Lysov V.A., Shaiduk O.Y. Prognostic significance of increasing the activity of neurohumoral systems in patients with myocardial infarction. Nauchnye vedomosti. Seriya Medicina. Farmaciya. 2011;10(105):37–43. (in Russian) [Кокорин В.А., Люсов В.А., Шайдюк О.Ю. Прогностическая значимость повышения активности нейрогуморальных систем у больных инфарктом миокарда. Научные ведомости. Серия Медицина. Фармация. 2011;10(105):37-43].

49. Holwerda D.A. A glycopeptide from the posterior lobe of pig pituitaries. I. Isolation and characterization. Eur. J. Biochem. 1972;28: 334–339.

50. Melnik A.A. Natriuretic peptides in the diagnosis of heart failure. Aspekty laboratornoj diagnostiki. 2014; 22: 24–5. (in Russian) [Мельник А.А. Натрийуретические пептиды в диагностике сер дечной недостаточности. Аспекты лабораторной диагностики. 2014; 22:24-25].

51. Lewandowski K.C., Lewiński A. et al. Copeptin as a marker of an altered CRH axis in pituitary disease. Endocrine. 2017;57(3):474–480.

52. Deveci F., Öner Ö., Telo S., Kırkıl G., Balin M., Kuluöztürk M. Prognostic value of copeptin in patients with acute pulmonary thromboembolism. Clin. Respir. J. 2019;doi: 10.1111/crj.13071.

53. Sang G., Du J.-M., Chen Y.Y. et al. Plasma copeptin levels are associated with prognosis of severe acute pancreatitis. Peptides. 2014; 51:4–8.

54. Santillan M.K., Santillan D.A., Scroggins S.M. et al. Vasopressin in preeclampsia: a novel very early human pregnancy biomarker and clinically relevant mouse model [published correction appears in Hypertension. 2015;65(3).e9]. Hypertension. 2014;64(4): 852–859.

55. Keller T., Tzikas S., Zeller T. et al. Copeptin improves early diagnosis of acute myocardial infarction. J. Am. Coll. Cardiol. 2010;55 (19):2096–2106.

56. Khan S.Q., Dhillon O.S., O’Brien R.J. et al. C-terminal provasopressin (copeptin) as a novel and prognostic marker in acute myocardial infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) study. Circulation. 2007;115(16):2103–2110.

57. Gu Y.L., Voors A.A., Zijlstra F. et al. Comparison of the temporal release pattern of copeptin with conventional biomarkers in acute myocardial infarction. Clin. Res. Cardiol. 2011;100(12):1069–76.

58. Vargas K.G., Kassem M., Mueller Ch. et al. Copeptin for the early rule-out of non-ST-elevation myocardial infarction. International J. of Cardiology. 2016;223:797–804.

59. Roffi M., Patrono C., Collet J.P. et al. Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2016;37(3):267–315.

60. Meune C., Zuily S., Wahbi K. et al. Combination of copeptin and high-sensitivity cardiac troponin T assay in unstable angina and nonST-segment elevation myocardial infarction: A pilot study. Arch. Cardiovasc. Dis. 2011;104:4–10.

61. Giannitsis E., Mockel M. Clinical Utility of Copeptin and troponin in the Emergency depertment. 2017.

62. Neuhold S., Huelsmann M., Strunk G. et al. Comparison of copeptin, B-type natriuretic peptide, and amino-terminal pro-B-type natriuretic peptide in patients with chronic heart failure: prediction of death at different stages of the disease. J. Am. Coll. Cardiol. 2008;52(4):266–272.

63. Vetrone F., Santarelli S., Russo V. et al. Copeptin decrease from admission to discharge has favorable prognostic value for 90-day events in patients admitted with dyspnea. Clin. Chem. Lab. Med. 2014;52(10):1457–64.

64. Silva Marques, Luz-Rodrigues, David, Cláudio. Biomarkers of functional class in systolic heart failure: The relevance of copeptin. Next Document Rev. Port. Cardiol. 2012;31:701–10.

65. Iwashita N., Nara N., Sato R., Nakatogawa T., Kobayashi S., Zama S., Mita M., Hishinuma S., Shoji M. Differential Regulation of Plasma Copeptin Levels in Patients with Heart Failure: A Single-Center Prospective Study. Tohoku J. Exp. Med. 2016;239(3):213–21. doi: 10.1620/tjem.239.213.

66. Alan Maisel, Yang Xue, Kevin Shah et al. Increased 90-Day Mortality in Patients With Acute Heart Failure With Elevated Copeptin: Se condary Results From the Biomarkers in Acute Heart Failure (BACH) Study. Circ. Heart Fail. 2011;4:613–620.


Для цитирования:


Алиева А.М., Алмазова И.И., Пинчук Т.В., Резник Е.В., Федулаев Ю.Н., Никитин И.Г. Значение копептина в диагностике и прогнозе течения сердечно-сосудистых заболеваний. Клиническая медицина. 2020;98(3):203-209. https://doi.org/10.30629/0023-2149-2020-98-3-203-209

For citation:


Aliyevа A.M., Almazova I.I., Pinchuk T.V., Resnick E.V., Fedulaev Yu.N., Nikitin I.G. The value of copeptin in the diagnosis and prognosis of cardiovascular diseases. Clinical Medicine (Russian Journal). 2020;98(3):203-209. (In Russ.) https://doi.org/10.30629/0023-2149-2020-98-3-203-209

Просмотров: 263


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)