Neutrophil extracellular traps (NETosis) as a factor contributing to the development and progression of diabetes mellitus and its microvascular complications
https://doi.org/10.30629/0023-2149-2021-99-11-12-608-614
Abstract
NETosis, a new form of cell death, has attracted close attention of researchers in recent years due to its dual eff ect on the pathological process. Being initially a defense reaction of the innate immune defenсe aimed at trapping and neutralizing pathogens (bacteria, viruses and fungi) that have invaded the body, NETosis, in case of excessive activation, has an opposite eff ect. It can contribute to the progression of the disease, causing autoimmunization, damage to surrounding tissue, or the occurrence of atherothrombotic events. This review presents data dealing with the formation of extracellular traps of neutrophils, called NETs. NETosis plays an important role in the pathogenesis of diabetes mellitus (DM) and its microvascular complications. For example, in type 1 DM, β-cell death promotes sequestration of neutrophils into the pancreas and is clearly correlated with increased NETosis. In patients with type 2 DM, the release is also signifi cantly increased. High levels of dsDNA, a marker of NETosis, are correlated with the development of cardiovascular disease and DM caused kidney disease, which is also consistent with the contributing role of NETosis in the pathogenesis of diabetic complications such as impaired wound healing and diabetic retinitis. The mechanisms linking NETosis with high glucose levels are not clearly understood, as NETosis is also increased in diabetic patients strictly controlling glucose levels. One can only assume that NETosis is not a consequence of impaired glycemic control. On the contrary, it causes hyperglycemia, which further increases the initially high level of NETosis in patients with DM.
About the Authors
K. A. AitbaevKyrgyzstan
Aitbaev Kubanych A.
720040, Bishkek
I. T. Murkamilov
Kyrgyzstan
Murkamilov Ilkhom T.
720020, Bishkek; , 720000, Bishkek
V. V. Fomin
Russian Federation
Fomin Viktor V.
119991, Moscow
I. O. Kudaibergenova
Kyrgyzstan
Kudaibergenova Indira O.
720020, Bishkek
F. A. Yusupov
Kyrgyzstan
Yusupov Furkat A.
723500, Osh
References
1. Rosales C., Lowell C.A., Schnoor M., Uribe-Querol E. Neutrophils: Their Role in Innate and Adaptive Immunity 2017. Journal of Immunology Research. 2017;2017:1–2. Article ID 9748345. DOI: 10.1155/2017/9748345
2. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018;18:134–147. DOI .10.1038/ nri.2017.105
3. Takei H., Araki A., Watanabe H., Ichinose A., Sendo F. Ra pid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes diff erent from typical apoptosis or necrosis. Journal of Leukocyte Biology. 1996;59:229– 240. DOI: 10.1002/jlb.59.2.229
4. Brinkmann V., Zychlinsky A. Benefi cial suicide: why neutrophils die to make NETs. Nature Reviews: Microbiology. 2007;5:577–582. DOI: 10.1038/nrmicro1710
5. Keshari R.S., Jyoti A., Dubey M., Kothari N., Kohli M., Bogra J. et al. Cytokines induced neutrophil extracellular traps formation: implication for the infl ammatory disease condition. PLoS ONE. 2012;7:e48111.DOI: 10.1371/journal.pone.0048111
6. Schorn C., Janko C., Latzko M., Chaurio R., Schett G., Herrmann M. Monosodium urate crystals induce extracellular DNA traps in neutrophils, eosinophils, and basophils but not in mononuclear cells. Frontiers in Immunology. 2012;3:277. DOI: 10.3389/fi mmu.2012.00277
7. Behnen M., Leschczyk C., Moller S., Batel T., Klinger M., Solbach W., Laskay T. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcgammaRIIIB and Mac-1. Journal of Immunology. 2014;193:1954– 1965. DOI: 10.4049/jimmunol.1400478
8. Yalavarthi S., Gould T.J., Rao A.N., Mazza L.F., Morris A.E., Nunez-Alvarez C. et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identifi ed mechanism of thrombosis in the antiphospholipid syndrome. Arthritis and Rheumatology. 2015;67:2990–3003. DOI: 10.1002/art.39247
9. Mantovani A., Cassatella M.A., Costantini C. & Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews: Immunology. 2011;11:519–531. DOI: 10.1038/ nri3024
10. Garcia-Romo G.S., Caielli S., Vega B., Connolly J., Allantaz F., Xu Z. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Science Translational Medicine. 2011;3:73ra20. DOI: 10.1126/scitranslmed.3001201
11. Semeraro F., Ammollo C.T., Morrissey J.H., Dale G.L., Friese P., Esmon N.L. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118:1952–1961. DOI: 10.1182/ blood-2011-03-343061
12. Hakkim A., Furnrohr B.G., Amann K., Laube B., Abed U.A., Brinkmann V., Herrmann M., Voll R.E., Zychlinsky A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. PNAS. 2010;107:9813–9818. DOI: 10.1073/ pnas.0909927107
13. Farrera C., Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process. Journal of Immunology. 2013;191:2647– 2656. DOI: 10.4049/jimmunol.1300436
14. Corsiero E., Pratesi F., Prediletto E., Bombardieri M. & Migliorini P. NETosis as source of autoantigens in rheumatoid arthritis. Frontiers in Immunology. 2016;7:485. DOI: 10.3389/fi mmu.2016.00485
15. Cooper M.E., Vranes D., Youssef S., Stacker S.A., Cox A.J., Rizkalla B. et al. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes. 1999;48:2229–2239. DOI: 10.2337/diabetes.48.11.2229
16. Wong S.L., Demers M., Martinod K., Gallant M., Wang Y., Goldfi ne A.B. et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nature Medicine. 2015;21:815–819. DOI: 10.1038/nm.3887
17. Qin J., Fu S., Speake C., Greenbaum C.J., Odegard J.M. NETosis associated serum biomarkers are reduced in type 1 diabetes in association with neutrophil count. Clinical and Experimental Immunology. 2016;184:318–322. DOI: 10.1111/cei.12783
18. Delgado-Rizo V., Martinez-Guzman M.A., Iniguez-Gutierrez L., GarciaOrozco A., Alvarado-Navarro A., Fafutis-Morris M. Neutrophil extracellular traps and its implications in infl ammation: an overview. Frontiers in Immunology. 2017;8:81. DOI: 10.3389/fi mmu.2017.00081
19. Yipp B.G., Kubes P. NETosis: how vital is it? Blood. 2013;122:2784– 2794. DOI: 10.1182/blood-2013-04-457671
20. Yang H., Biermann M.H., Brauner J.M., Liu Y., Zhao Y., Herrmann M. New insights into neutrophil extracellular traps: mechanisms of formation and role in infl ammation. Frontiers in Immunology. 2016;7:302. DOI: 10.3389/fi mmu.2016.00302
21. Li P., Li M., Lindberg M.R., Kennett M.J., Xiong N., Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. Journal of Experimental Medicine. 2010;207:1853–1862. DOI: 10.1084/jem.20100239
22. Lewis H.D., Liddle J., Coote J.E., Atkinson S.J., Barker M.D., Bax B.D. et al. Inhibition of PAD4 activity is suffi cient to disrupt mouse and human NET formation. Nature Chemical Biology. 2015;11:189–191. DOI: org/10.1038/nchembio.1735
23. Papayannopoulos V., Metzler K.D., Hakkim A. & Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. Journal of Cell Biology. 2010;191:677– 691. DOI: 10.1083/jcb.201006052
24. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S. et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–1535. DOI: org/10.1126/science.1092385 25. Neeli I., Khan S.N., Radic M. Histone deimination as a response to infl ammatory stimuli in neutrophils. Journal of Immunology. 2008;180:1895–1902. DOI: 10.4049/jimmunol.180.3.1895
25. Neeli I., Dwivedi N., Khan S. & Radic M. Regulation of extracellular chromatin release from neutrophils. Journal of Innate Immunity. 2009;1:194–201. DOI: 10.1159/000206974
26. Diana J., Simoni Y., Furio L., Beaudoin L., Agerberth B., Barrat F., Lehuen A. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nature Medicine. 2013;19:65–73. DOI: 10.1038/nm.3042
27. Harsunen M.H., Puff R., D’Orlando O., Giannopoulou E., Lachmann L., Beyerlein A. et al. Reduced blood leukocyte and neutrophil numbers in the pathogenesis of type 1 diabetes. Hormone and Metabolic Research. 2013;45:467–470. DOI: 10.1055/s-0032-1331226
28. Valle A., Giamporcaro G.M., Scavini M., Stabilini A., Grogan P., Bianconi E. et al. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes. 2013;62:2072–2077. DOI: 10.2337/db12-1345
29. Wang Y., Xiao Y., Zhong L., Ye D., Zhang J., Tu Y. et al. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with beta-cell autoimmunity in patients with type 1 diabetes. Diabetes. 2014;63:4239–4248. DOI: 10.2337/db14-0480
30. Menegazzo L., Ciciliot S., Poncina N., Mazzucato M., Persano M., Bonora B. et al. NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetologica. 2015;52:497–503. DOI: 10.1007/s00592-014-0676-x
31. Carestia A., Frechtel G., Cerrone G., Linari M.A., Gonzalez C.D., Casais P. et al. NETosis before and after hyperglycemic control in type 2 diabetes mellitus patients. PLoS ONE. 2016;1:e0168647. DOI: 10.1371/journal.pone.0168647
32. Menegazzo L., Scattolini V., Cappellari R., Bonora B.M., Albiero M., Bortolozzi M. et al. The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetologica. 2018;55:593–601. DOI: 10.1007/s00592-018-1129-8
33. Alexiewicz J.M., Kumar D., Smogorzewski M., Klin M., Massry S.G. Polymorphonuclear leukocytes in non-insulin-dependent diabetes mellitus: abnormalities in metabolism and function. Annals of Internal Medicine. 1995;123:919–924.DOI: 10.7326/0003-4819-123-12- 199512150-00004
34. Rodriguez-Espinosa O., Rojas-Espinosa O., Moreno-Altamirano M.M., Lopez-Villegas E.O., Sanchez-Garcia F.J. Metabolic requirements for neutrophil extracellular traps formation. Immunology. 2015;145:213–224. DOI: 10.1111/imm.12437
35. Forbes J.M., Cooper M.E. Mechanisms of diabetic complications. Physiological Reviews. 2013;93:137–188. DOI: 10.1152/ physrev.00045.2011
36. Callaghan B.C., Price R.S., Feldman E.L. Distal symmetric polyneuropathy: a review. JAMA 2015;314:2172–2181. DOI: 10.1001/ jama.2015.13611
37. Fadini G.P., Menegazzo L., Rigato M., Scattolini V., Poncina N., Bruttocao A. et al. NETosis delays diabetic wound healing in mice and humans. Diabetes. 2016;65:1061–1071.DOI: 10.2337/db15-0863
38. Volmer-Thole M., Lobmann R. Neuropathy and diabetic foot syndrome. International Journal of Molecular Sciences. 2016;17(6):917. DOI: 10.3390/ijms17060917
39. Das S.K., Yuan Y.F. & Li M.Q. Specifi c PKC beta II inhibitor: one stone two birds in the treatment of diabetic foot ulcers. Bioscience Reports. 2018;38:BSR20171459. DOI: 10.1042/BSR20171459
40. Fontayne A., Dang P.M., Gougerot-Pocidalo M.A., El-Benna J. Phosphorylation of p47phox sites by PKC alpha, beta II, delta, and zeta: eff ect on binding to p22phox and on NADPH oxidase activation. Biochemistry. 2002;41:7743–7750. DOI: 10.1021/ bi011953s
41. Yang C.T., Chen L., Chen W.L., Li N., Chen M.J., Li X. et al. Hydrogen sulfi de primes diabetic wound to close through inhibition of NETosis. Molecular and Cellular Endocrinology .2019; 480:74–82. DOI: 10.1016/j. mce.2018.10.013
42. Park J.H., Kim J.E., Gu J.Y., Yoo H.J., Park S.H., Kim Y.I. et al. Eva luation of circulating markers of neutrophil extracellular trap (NET) formation as risk factors for diabetic retinopathy in a Case-Control Association Study. Experimental and Clinical Endocrinology and Diabetes. 2016;124:557–561. DOI: org/10.1055/s-0042-101792
43. Wang L., Zhou X., Yin Y., Mai Y., Wang D., Zhang X. Hyperglycemia induces neutrophil extracellular traps formation through an NADPH oxidase-dependent pathway in diabetic retinopathy. Frontiers in Immunology. 2018;9:3076. DOI: 10.3389/fi mmu.2018.03076
44. Miyoshi A., Yamada M., Shida H., Nakazawa D., Kusunoki Y., Nakamura A. et al. Circulating neutrophil extracellular trap levels in well-controlled Type 2 diabetes and pathway involved in their formation induced by high-dose glucose. Pathobiology. 2016;83:243–251. DOI: 10.1159/000444881
45. Eid A.A., Gorin Y, Fagg B.M., Maalouf R., Barnes J.L., Block K., Abboud H.E. Mechanisms of podocyte injury in diabetes: role of cytochrome P450 and NADPH oxidases. Diabetes. 2009;58:1201– 1211. DOI: 10.2337/db08-1536
46. Eid A.A., Ford B.M., Block K., Kasinath B.S., Gorin Y., Ghosh-Choudhury G. et al. AMP-activated protein kinase (AMPK) nega tively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. Journal of Biological Chemistry. 2010; 285: 37503–37512. DOI: 10.1074/jbc.M110.136796
47. Eid A.A., Lee D.Y., Roman L.J., Khazim K., Gorin Y. Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression. Molecular and Cellular Biology. 2013;33:3439–3460. DOI: 10.1128/ MCB.00217-13
48. Eid A.A., Ford B.M., Bhandary B., de Cassia Cavaglieri R., Block K., Barnes J.L. et al. Mammalian target of rapamycin regulates Nox4- me diated podocyte depletion in diabetic renal injury. Diabetes. 2013;62:2935–2947. DOI: 10.2337/db12-1504
49. Eid S, Boutary S., Braych K., Sabra R., Massaad C., Hamdy A. et al. mTORC2 signaling regulates Nox4-induced podocyte depletion in diabetes. Antioxidants and Redox Signaling. 2016;25:703–719. DOI: 10.1089/ ars.2015.6562
50. Eid S.A., El Massry M., Hichor M., Haddad M., Grenier J., Dia B. et al. Targeting the NADPH oxidase-4 and liver X receptor pathway preserves Schwann cell integrity in diabetic mice. Diabetes. 2020;69:448–464. https://DOI.org/10.2337/db19-0517
51. Zhang M, Brewer A.C., Schröder K., Santos C.X.C., Grieve D.J., Wang M. et al. NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. PNAS. 2010;107:18121–18126. DOI: 10.1073/pnas.1009700107
52. Schnelle M., Sawyer I., Anilkumar N., Mohamed B.A., Richards D.A., Toischer K. et al. NADPH oxidase-4 promotes eccentric cardiac hypertrophy in response to volume overload. Cardiovascular Research. 2019;117(1) [epub]. DOI: 10.1093/cvr/cvz331
53. Schürmann C., Rezende F., Kruse C., Yasar Y., Löwe O., Fork C. et al. The NADPH oxidase Nox4 has anti-atherosclerotic functions. European Heart Journal. 2015;36:3447–3456. DOI: 10.1093/eurheartj/ ehv460
54. Berezin A. Challenging role of neutrophil extracellular traps in vas cular complications of diabetes mellitus. Integr. Mol. Med. 2018;5(3):1–5. DOI:10.15761/IMM.1000330
Review
For citations:
Aitbaev K.A., Murkamilov I.T., Fomin V.V., Kudaibergenova I.O., Yusupov F.A. Neutrophil extracellular traps (NETosis) as a factor contributing to the development and progression of diabetes mellitus and its microvascular complications. Clinical Medicine (Russian Journal). 2021;99(11-12):608-614. (In Russ.) https://doi.org/10.30629/0023-2149-2021-99-11-12-608-614