Возможности и перспективы систем поддержки принятия клинических решений
https://doi.org/10.30629/0023-2149-2021-99-11-12-602-607
Аннотация
В статье обсуждаются вопросы применения программно-информационных решений, формирующих комфортную среду для работы врача. В связи с большой сложностью и недостаточной изученностью заболеваний, большим объемом постоянно обновляющихся знаний, часто ограниченными ресурсами крайне важна помощь в принятии решений с использованием современных компьютерных технологий. Цифровые системы поддержки клинических решений позволяют улучшить диагностику и лечения болезней, снизить частоту ошибочных и неоптимальных решений, помогают индивидуализации терапевтических программ. Наиболее эффективно использовать системы поддержки клинических решений, реализованные в виде программ для мобильных устройств, позволяющих врачу применять инструменты в любом месте и в любое время.
Об авторе
Ф. И. БеляловРоссия
Белялов Фарид Исмагильевич — д-р мед. наук, профессор кафедры геронтологии, гериатрии и клинической фармакологии
664079, Иркутск
Список литературы
1. American College of Physicians. Policy Recommendations to Guide the Use of Te lemedicine in Primary Care Settings. Ann. Intern. Med. 2015;163:787–789. DOI: 10.7326/M15-0498
2. A merican Heart Association. Expanding Access to Care Through Telehealth. 2020:15. DOI: 10.7326/M15-0498
3. Cowie M.R., Bax J., Bruining N. et al. e-Health: a position statement of the European Society of Cardiology. Eur. Heart. J. 2016;37(1):63– 66. DO I: 10.1093/eurheartj/ehv416
4. Schwamm L., Chumbler N., Brown E. et al. Re commendations for the Implementation of Telehealth in Cardiovascular and Stroke Care: A Policy Statement From the American Heart Association. Circulation. 2017;7:e24–e44. DO I: 10.1161/CIR.0000000000000475
5. WHO Guideline: recommendations on digital interventions for health system strengthening. 2019:124
6. Shah S., Yeheskel A., Hossain A. et al. The Impact of Guideline Integration into Electronic Medical Records on Outcomes for Patients with Diabetes: A Systematic Review. The American Journal of Medicine. 2021;8:952–962.e4
7. Tarabichi Y., Cheng A., Bar-Shain D. et al. Improving Timeliness of Antibiotic Administration Using a Provider and Pharmacist Facing Sepsis Early Warning System in the Emergency Department Setting: A Randomized Controlled Quality Improvement Initiative. Crit. Care Med. 2021 Aug 20.
8. Prasad P.A., Fang M.C., Abe-Jones Y. et al. Time to Recognition of Sepsis in the Emergency Department Using Electronic Health Record Data: A Comparative Analysis of Systemic Infl ammatory Response Syndrome, Sequential Organ Failure Assessment, and Quick Sequential Organ Failure Assessment. Crit. Care Med. 2020;48(2):200–209.
9. Martinez-Franco A.I., Sanchez-Mendiola M., Mazon-Ramirez J.J. et al. Diagnostic ac curacy in Family Medicine residents using a clinical decision support system (D Xplain): a randomized-controlled trial. Diagnosis (Berl). 2018;5(2):71–76. DOI: 10.1515/dx-2017-0045
10. Vinson D.R., Mark D.G., Chettipally U.K. et al. Increasing safe outpatient management of em ergency department patients with pulmonary embolism: A controlled pragmatic trial. Annals of Internal Medicine. 2018;12:855–865. DOI: 10.7326/M18-1206
11. Evans R.S., Kfoury A.G., Horne B.D. et al. Clinical Decision Support to Effi ciently Id entify Patients Eligible for Advanced Heart Failure Therapies. J. Card. Fail. 2017;23(10):719–726. DOI: 10.1016/j. cardfail.2017.08.449
12. Vasey B., Ursprung S., Beddoe B. et al. Association of Clinician Diagnostic Pe rformance With Machine Learning-Based Decision Support Systems: A Systematic Review. JAMA Netw Open. 2021;4(3):e211276. DOI: 10.1001/jamanetworkopen.2021.1276
13. Page N., Baysari M.T., Westbrook J.I. A sy stematic review of the eff ectiveness of in terruptive medication prescribing alerts in hospital CPOE systems to change prescriber behavior and improve patient safety. Int. J. Med. Inform. 2017;105:22–30. DOI: 10.1016/j.ijmedinf.2017.05.011
14. Gulliford M., Prevost A., Charlton J. et al. Eff ectiveness and safety of el ectronically de livered prescribing feedback and decision support on antibiotic use for respiratory illness in primary care: REDUCE cluster randomised trial. BMJ. 2019;364:l236. DOI: 10.1136/bmj. l236
15. Scott I.A., Pillans P.I., Barras M., Morris C. Us ing EMR-enabled computerized de cision su pport systems to reduce prescribing of potentially inappropriate medications: a narrative review. Ther. Adv. Drug. Saf. 2018;9(9):559–573. DOI: 10.1177/2042098618784809
16. Ibáñez-Garcia S., Rodriguez-Gonzalez C., Escudero-Vilaplana V. et al. Development an d Evaluation of a Clinical Decision Support System to Improve Medication Safety. Appl. Clin. Inform. 2019;10(3):513–520. DOI: 10.1055/s-0039-1693426
17. Silva Almodóvar A., Nahata M.C. Implementing Clinical Decision Support Tools and Ph armacovigilance to Reduce the Use of Potentially Harmful Medications and Health Care Costs in Adults With Heart Failure. Front. Pharmacol. 2021;12:612941. DOI: 10.3389/ fphar.2021.612941
18. Piazza G., Hurwitz S., Galvin C. et al. Alert-based computerized decision support for high-risk hospitalized patients with atrial fi brillation not prescribed anticoagulation: a randomized, controlled trial (AF-ALERT). European Heart Journal. 2020;10:1086–1096. DOI: 10.1093/eurheartj/ehz385
19. Rieckert A., Reeves D., Altiner A. et al. Use of an electronic decision support tool to reduce po lypharmacy in elderly people with chronic diseases: cluster randomised controlled trial. BMJ. 2020;369:m1822. DOI: 10.1136/bmj.m1822
20. Liu Y., Chu L., Su H. et al. Impact of Computer-Based and Pharmacist-Assisted Me dication Review Initiated in the Emergency Department. Journal of the American Geriatrics Society. 2019;11:2298– 2304. DOI: 10.1111/jgs.16078
21. Tisdale J.E., Jaynes H.A., Kingery J.R. et al. Eff ectiveness of a clinical decision su pport system for reducing the risk of QT interval prolongation in hospitalized patients. Circ. Cardiovasc Qual Outcomes. 2014;7(3):381–90. DOI: 0.1161/CIRCOUTCOMES.113.000651
22. Kwan J., Lo L., Ferguson J. et al. Computerised clinical decision support systems and ab solute improvements in care: meta-analysis of controlled clinical trials. BMJ. 2020;370:m3216. DOI: 10.1136/ bmj.m3216.
23. Vinson D.R., Mark D.G., Chettipally U.K. et al. Increasing safe outpatient management of em ergency department patients with pulmonary embolism: A controlled pragmatic trial. Annals of Internal Medicine. 2018;12:855–865. DOI: 10.7326/M18-1206
24. Moja L., Kwag K.H., Lytras T. et al. Eff ectiveness of computerized decision support sy stems linked to electronic health records: a systematic review and meta-analysis. Am. J. Public Health. 2014;104(12):e12–22. DOI: 10.2105/AJPH.2014.302164
25. Hitti E., Hadid D., Melki J. et al. Mo bile device use among emergency department healthcare professionals: prevalence, utilization and attitudes. Sci. Rep. 2021;11(1):1917. DOI: 10.1038/s41598-021- 81278-5
26. Martins Sheila C.O., Weiss Gustavo, Almeida Andrea G. et al. Va lidation of a Smartphone Application in the Evaluation and Treatment of Acute Stroke in a Comprehensive Stroke Center. Stroke. 2020;1:240–246. DOI: 10.1161/STROKEAHA.119.026727
27. Goncalves-Bradley D.C., Maria A.R. J., Ricci-Cabello I. et al. Mo- bile technologies to support healthcare provider to healthcare provider communication and management of care. Cochrane Database of Systematic Reviews. 2020;8(8):CD012927. DOI: 10.1002/14651858. CD012927.pub2
28. Ong S., Jassal S., Porter E. et al. Digital Applications Targeting Medi cation Safety in Ambulatory High-Risk CKD Patients. Clin. J. Am. Soc. Nephrol. 2021;4:532–542. DOI: 10.2215/CJN.15020920
29. Akkawi M.E., Nik Mohamed M.H., Md Aris M.A. The impact of a multifaceted in tervention to reduce potentially inappropriate prescri bing among discharged older adults: a before-and-after study. J. Pharm. Policy Pract. 2020;13:39. DOI: 10.1186/s40545- 020-00236-0
30. Sutton R., Pincock D., Baumgart D. et al. An overview of clinical decision support sy stems: benefi ts, risks, and strategies for success. NPJ Digital Medicine. 2020;1:17. DOI: 10.1038/s41746-020-0221-y
31. Zenziper Straichman Y., Kurnik D. et al. Prescriber response to computerized drug alerts for electronic prescriptions among hospitalized patients. Int. J. Med. Inform. 2017;107:70–75. DOI: 10.1016/j.ijmedinf.2017.08.008
32. Белялов Ф.И. Лечение болезней в условиях коморбидности. 12-е изд. Москва: ГЭОТАР-Медиа, 2021:560.
33. Белялов Ф.И. Прогнозирование и шкалы в медицине. 3-е изд. Москва: МЕДпресс-информ, 2020:248.
Рецензия
Для цитирования:
Белялов Ф.И. Возможности и перспективы систем поддержки принятия клинических решений. Клиническая медицина. 2021;99(11-12):602-607. https://doi.org/10.30629/0023-2149-2021-99-11-12-602-607
For citation:
Belyalov F.I. Potentials and prospects for digital medical ecosystems. Clinical Medicine (Russian Journal). 2021;99(11-12):602-607. (In Russ.) https://doi.org/10.30629/0023-2149-2021-99-11-12-602-607