Preview

Clinical Medicine (Russian Journal)

Advanced search

Biomarkers of heart and vascular lesions in the framework of mineral and bone disorders in chronic kidney disease, correction possibilities

https://doi.org/10.30629/0023-2149-2021-99-4-245-258

Abstract

Сardiovascular disease (СVD) is the most common complication of chronic kidney disease (СKD). In patients with the earlier stages of CKD, the risk of death from CVD greatly exceeds the risk of progression to end-stage renal disease. In recent years, accumulated data suggest that chronic kidney disease — mineral and bone disorders (CKD-MBD) are strongly associated with cardiovascular events and mortality. Among cardiovascular damage in CKD, both, the progressive cardiac remodeling and vascular calcifi cation, contribute immensely, and lead to an urgently high cardiovascular mortality in patients with CKD. Clarifi cation of CKD progression mechanisms and possible early markers of CVD has led to interest in studying the identifi ed factors such as fi broblast growth factor-23 (FGF-23), Klotho and sclerostin in recent years. Results of studies show that disorders in the system of FGF-23–Klotho–sclerostin correlate with the frequency and severity of hypertension, cardiac remodeling, vascular calcifi cation, anaemia, malnutrition, infl ammation, and strongly aggravate cardiovascular risk in CKD. This review represents an analysis of the available data showing the potential association of СVD with established (phosphate, parathyroid hormone (PTH), Vitamin D) and newer (FGF-23, Klotho, sclerostin) СKD-MBD biomarkers. In addition, it has been shown that renoprotective therapy, including renin-angiotensin blockers, low-protein diet with amino/keto acid supplementation, phosphate binders, erythropoiesis stimulators, vitamin D metabolites used to reach the target levels of blood pressure, serum phosphorus, haemoglobin, PTH and nutritional status disorders, can aff ect CKD-MBD biomarkers and reduce the risk of cardiovascular events in CKD patients.

About the Authors

L. Yu. Milovanova
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

Lyudmila Yu. Milovanova — MD, PhD, Professor of the Department of Internal, Occupational Diseases and Rheumatology

119991, Moscow



V. D. Beketov
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

119991, Moscow



S. Yu. Milovanova
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

119991, Moscow



M. V. Taranova
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

119991, Moscow



A. A. Filippova
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

119991, Moscow



A. I. Pasechnik
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

119991, Moscow



References

1. Go A.S., Chertow G.M., Fan D., McCulloch C.E., Hsu C.Y. Chronic kidney disease and the risks of death, cardiovascular events and hospitalization. N. Engl. J. Med. 2004;351:1296–1305.

2. Couser W..G., Remuzzi G., Mendis S., Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80(12):1258–1270. DOI: 10.1038/ki.2011.368

3. Gargiulo R., Suhail F., Lerma E. Cardiovascular disease and chronic kidney disease. Dis. Mon. 2015;61:403–413. DOI: 10.1016/j.disamonth.2015.07.005

4. Waziri B., Duarte R., Naicker S. Chronic kidney disease — mineral and bone disorder (CKD-MBD): current perspectives. Int. J. Nephro.l Renovasc. Dis. 2019;12:263–276. DOI: 10.2147/IJNRD.S191156

5. De Albuquerque Suassuna P.G., Sanders-Pinheiro H., De Paula R.B. Uremic cardiomyopathy: a new piece in the chronic kidney disease-mineral and bone disorder puzzle. Front. Med. 2018;5:206. DOI: 10.3389/fmed.2018.00206

6. Remppis A., Ritz E. Cardiac problems in the dialysis patient: Beyond coronary disease. Semin. Dial. 2008;21:319–325. DOI: 10.1111/j.1525-139X.2008.00457.x

7. Rroji M., Figurek A., Spasovski G. Should we consider the cardiovascular system while evaluating CKD-MBD? Toxins. 2020;12(3):140. DOI: 10.3390/toxins12030140

8. Milovanova L.Y., Fomin V.V., Lysenko (Kozlovskaya) L.V., Mukhin N.A., Milovanova SY., Taranova M.V. et al. Disorders in the System of Mineral and Bone Metabolism Regulators — FGF-23, Klotho and Sclerostin — in Chronic Kidney Disease: Clinical Signifi - cance and Possibilities for Correction. DOI: 10.5772/intechopen.69298

9. D’Marco L., Bellasi A., Raggi P. Cardiovascular biomarkers in chronic kidney disease: State of current research and clinical applicability. Dis. Markers. 2015. DOI: 10.1155/2015/586569.

10. Vogt I, Haff ner D, Leifheit-Nestler M. FGF-23 and Phosphate — Cardiovascular Toxins in CKD. Toxins (Basel). 2019;11(11):647. DOI: 10.3390/toxins11110647

11. Jono S., McKee M.D., Murry C.E., Shioi A., Nishizawa Y., Mori K.et al. Phosphate regulation of vascular smooth muscle cell calcifi cation. Circ. Res. 2000;87:10–17. DOI: 10.1161/01.RES.87.7.e10

12. Paloian N.J., Giachelli C.M. A current understanding of vascular calcifi cation in CKD. Am. J. Physiol. Renal Physiol. 2014;307:891–900. DOI: 10.1152/ajprenal.00163.2014

13. Giachelli C.M. The emerging role of phosphate in vascular calcifi cation. Kidney Int. 2009;75:890–897. DOI: 10.1038/ki.2008.644

14. Taniguchi M., Fukagawa M., Fujii N., Hamano T., Shoji T., Yokoyama K. et al. Committee of renal data registry of the japanese society for dialysis therapy. Serum phosphate and calcium should be primarily and consistently controlled in prevalent hemodialysis patients. Ther. Apher. Dial. 2013;17:221–228. DOI: 10.1111/1744-9987.12030

15. Rroji M., Seferi S., Cafka M., Petrela E., Likaj E., Barbullushi M. et al. Is residual renal function and better phosphate control in peritoneal dialysis an answer for the lower prevalence of valve calcifi cation compared to hemodialysis patients? Int. Urol. Nephrol. 2014;46:175–182. DOI: 10.1007/s11255-013-0438-7

16. Fujii H., Joki N. Mineral metabolism and cardiovascular disease in CKD. Clin. Exp. Nephrol. 2017;21:53–63. DOI: 10.1007/s10157-016-1363-8

17. Adeney K.L., Siscovick D.S., Ix J.H., Seliger S.L., Shlipak M.G., Jenny N.S., Kestenbaum B.R. Association of Serum Phosphate with Vascular and Valvular Calcifi cation in Moderate CKD. J. Am. Soc. Nephrol. 2009;20:381–387. DOI: 10.1681/ASN.2008040349

18. Shigematsu T., Kono T., Satoh K., Yokoyama K., Yoshida T., Hosoya T., Shirai K. Phosphate overload accelerates vascular calcium deposition in end-stage renal disease patients. Nephrol. Dial. Transplant. 2003;18:iii86–iii89. DOI: 10.1093/ndt/gfg1022

19. Shroff R.C., McNair R., Skepper J.N., Figg N., Schurgers L.J., Deanfi eld J. et al. Chronic mineral dysregulation promotes vascular smooth muscle cell adaptation and extracellular matrix calcifi cation. J. Am. Soc. Nephrol. 2010;21:103–112. DOI: 10.1681/ASN.2009060640

20. Foley R.N., Collins A.J., Herzog C.A., Ishani A., Kalra P.A. Serum phosphate and left ventricular hypertrophy in young adults: the coronary artery risk development in young adults study. Kidney Blood Press. Res. 2009;32:37–44. DOI: 10.1159/000203348

21. Yamamoto K.T., Robinson-Cohen C., De Oliveira M.C., Kostina A., Nettleton J.A., Ix J.H. et al. Dietary Phosphorus is Associated with Greater Left Ventricular Mass. Kidney Int. 2013;83:707–714. DOI: 10.1038/ki.2012.303

22. Chue C.D., Edwards N.C., Moody W.E., Steeds R.P., Townend J.N., Ferro C.J. Serum phosphate is associated with left ventricular mass in patients with chronic kidney disease: a cardiac magne tic resonance study. Heart. 2012;98:219–224. DOI: 10.1136/heartjnl-2011-300570

23. Zou J., Yu Y., Wu P., Lin F., Yao Y., Xie Y., Jiang G. Serum phosphorus is related to left ventricular remodeling independent of renal function in hospitalized patients with chronic kidney disease. Int. J. Cardiol. 2016;221:134–140. DOI: 10.1016/j.ijcard.2016.06.181

24. Grabner A., Amaral A.P., Schramm K., Singh S., Sloan A., Yanucil C. et al.Activation of cardiac fi broblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. 2015;22:1020–1032. DOI: 10.1016/j.cmet.2015.09.002

25. Amann K., Breitbach M., Ritz E., Mall G. Myocyte/capillary mis match in the heart of uremic patients. J. Am. Soc. Nephrol. 1998;9:1018–1022.

26. Amann K., Törnig J., Kugel B., Gross M.L., Tyralla K., El-Shakmak A. et al. Hyperphosphatemia aggravates cardiac fi brosis and microvascular disease in experimental uremia. DOI: 10.1046/j.1523-1755.2003.00864.x

27. Wang S., Qin L., Wu T., Deng B., Sun Y., Hu D. et al. Elevated cardiac markers in chronic kidney disease as a consequence of hyperphosphatemia-induced cardiac myocyte injury. Med. Sci. Monit. 2014;20:2043–2053. DOI: 10.12659/msm.890909

28. Tomaschitz A., Ritz E., Pieske B., Rus-Machan J., Kienreich K., Verhyen N. et al. Aldosterone and parathyroid hormone interactions as mediators of metabolic and cardiovascular disease. Metabolism. 2014;63:20–31. DOI: 10.1016/j.metabol.2013.08.016

29. Bogin E., Massry S.G., Harary I. Eff ect of parathyroid-hormone on rat heart cells. J. Clin. Investig. 1981;67:1215–1227. DOI: 10.1172/JCI110137

30. Silver J., Rodriguez M., Slatopolsky E. FGF-23 and PTH — Double agents at the heart of CKD. Nephrol. Dial. Transpl. 2012;27:1715–1720. DOI: 10.1093/ndt/gfs050

31. Coratelli P., Buongiorno E., Petrarulo F., Corciulo R., Giannattasio M., Passavanti G., Antonelli G. Pathogenetic aspects of uremic cardiomyopathy. Miner. Electrolyte Metab. 1989;15:246–253.

32. Saleh F.N., Schirmer H, Sundsfjord J., Jorde R. Parathyroid hormone and left ventricular hypertrophy. Eur. Heart J. 2003;24:2054–2060. DOI: 10.1016/j.ehj.2003.09.010

33. Jorde R., Sundsfjord J., Haug E., Bonaa K.H. Relation between low calcium intake, parathyroid hormone, and blood pressure. Hypertension. 2000;35:1154–1159. DOI: 10.1161/01.HYP.35.5.1154

34. Jorde R., Svartberg J., Sundsfjord J. Serum parathyroid hormone as a predictor of increase in systolic blood pressure in men. J. Hypertens. 2005;23:1639–1644. DOI: 10.1097/01.hjh.0000179764.40701.36

35. Zhang Y., Zhang D.Z. Circulating parathyroid hormone and risk of hypertension: A meta-analysis. Clin. Chim. Acta. 2018;482:40–45. DOI: 10.1016/j.cca.2018.03.028

36. Schlüter K.D., Piper H.M. Cardiovascular actions of parathyroid hormone and parathyroid hormone-related peptide. Cardiovasc. Res. 1998;37:34–41. DOI: 10.1016/S0008-6363(97)00194-6

37. Jorde R., Svartberg J., Sundsfjord J. Serum parathyroid hormone as a predictor of increase in systolic blood pressure in men. J. Hypertens 2005;23:1639–1644. DOI: 10.1097/01.hjh.0000179764.40701.36

38. Noce A., Canale M.P., Capria A., Rovella V., Tesauro M., Splendiani G. et al. Coronary artery calcifi cations predict long term cardiovascular events in nondiabetic Caucasian hemodialysis patients. Aging. 2015;7:269–279. DOI: 10.18632/aging.100740

39. Drüeke T., Fauchet M., Fleury J., Lesourd P., Toure Y., Le Pailleur C. et al. Eff ect of parathyroidectomy on left-ventricular function in haemodialysis patients. Lancet. 1980;1:112–114. DOI: 10.1016/S0140-6736(80)90602-9

40. Fellner S.K., Lang R.M., Neumann A., Bushinsky D.A., Borow K.M. Parathyroid hormone and myocardial performance in dialysis patients. Am. J. Kidney Dis. 1991;18:320–325. DOI: 10.1016/S0272-6386(12)80090-4

41. Pascale A.V., Inelli R., Giannotti R., Visco V., Fabbricatore D., Matula I. et al. Vitamin D, parathyroid hormone and cardiovascular risk: The good, the bad and the ugly. J. Cardiovasc. Med. 2018;19:62–66. DOI: 10.2459/JCM.0000000000000614

42. Duque E.J., Elias R.M., Moysés R.M.A. Parathyroid Hormone: A Uremic Toxin. Toxins (Basel). 2020;12(3):189. DOI:10.3390/toxins12030189.

43. Schlieper G., Schurgers L., Brandenburg V., Reutelingsperger C., Floege J. Vascular calcifi cation in chronic kidney disease: An update. Nephrol. Dial. Transpl. 2016;31:31–39. DOI: 10.1093/ndt/gfv111

44. Vimaleswaran K.S., Cavadino A., Berry D.J., Jorde R., Dieff enbach A.K., Lu C. et al. Association of Vitamin D status with arterial blood pressure and hypertension risk: A mendelian randomisation study. Lancet Diabetes Endocrinol. 2014;2:719–729. DOI: 10.1016/S2213-8587(14)70113-5

45. Jiang W.L., Gu H.B., Zhang Y.F., Xia Q.Q., Qi J., Chen J.C. Vitamin D supplementation in the treatment of chronic heart failure: A meta-analysis of randomized controlled trials. Clin. Cardiol. 2016;39:56–61. DOI: 10.1002/clc.22473

46. Mann M.C., Hobbs A.J., Hemmelgarn B.R., Roberts D.J., Ahmed S.B., Rabi D.M. Eff ect of oral Vitamin D analogs on mortality and cardiovascular outcomes among adults with chronic kidney disease: A meta-analysis. Clin. Kidney. J. 2015;8:41–48. DOI: 10.1093/ckj/sfu122

47. Kumar V., Yadav A.K., Singhal M., Kumar V., Lal A., Banerjee D. et al. Vascular function and cholecalciferol supplementation in CKD: A self-controlled case series. J. Steroid Biochem. Mol. Biol. 2018;180:19–22. DOI: 10.1016/j.jsbmb.2018.01.001

48. Chitalia N., Ismail T., Tooth L., Boa F., Hampson G., Goldsmith D. et al. Impact of Vitamin D supplementation on arterial vasomotion, stiff - ness and endothelial biomarkers in chronic kidney disease patients. PLoS ONE. 2014;9:e91363. DOI: 10.1371/journal.pone.0091363

49. Lundwall K., Jacobson S.H., Jörneskog G., Spaak J. Treating endothelial dysfunction with Vitamin D in chronic kidney disease: A metaanalysis. BMC Nephrol. 2018;19:247. DOI: 10.1186/s12882-018-1042-y.

50. Chen S., Law C.S., Grigsby C.L., Olsen K., Hong T.T., Zhang Y. et al. Cardiomyocyte-specifi c deletion of the Vitamin D receptor gene results in cardiac hypertrophy. Circulation. 2011;124:1838–1847. DOI: 10.1161/CIRCULATIONAHA.111.032680

51. Weishaar R.E., Simpson R.U. Vitamin D3 and cardiovascular function in rats. J. Clin. Investig. 1987;79:1706–1712. DOI: 10.1172/JCI113010.

52. Bae S., Yalamarti B., Ke Q., Choudhury S., Yu H., Karumanchi S.A. et al. Preventing progression of cardiac hypertrophy and development of heart failure by paricalcitol therapy in rats. Cardiovasc. Res. 2011;91:632–639. DOI: 10.1093/cvr/cvr133

53. Wang A.Y., Fang F., Chan J., Wen Y.Y., Qing S., Chan I.H. et al. Eff ect of paricalcitol on left ventricular mass and function in CKD — The OPERA trial. J. Am. Soc. Nephrol. 2014;25:175–186. DOI: 10.1681/ASN.2013010103

54. Thadhani R., Appelbaum E., Pritchett Y., Chang Y., Wenger J., Tamez H. et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: The PRIMO randomized controlled trial. JAMA. 2012;307:674–684. DOI: 10.1001/jama.2012.120

55. Gluba-Brzózka A., Franczyk B., Ciałkowska-Rysz A., Olszewski R., Rysz J. Impact of Vitamin D on the Cardiovascular System in Advanced Chronic Kidney Disease (CKD) and Dialysis Patients Nutrients. 2018;10(6):709. DOI: 10.3390/nu10060709

56. Levin A., Li Y.C. Vitamin D and its analogues: Do they protect against cardiovascular disease in patients with kidney disease? Kidney Int. 2005;68:1973–1981. DOI: 10.1111/j.1523-1755.2005.00651.x

57. Li YC., Kong J., Wei M., Chen Z.F., Liu S.Q., Cao L.P. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J. Clin. Investig. 2002;110:229–238. DOI: 10.1172/JCI0215219.

58. Li Y.C. Vitamin D regulation of the renin-angiotensin system. J. Cell Biochem. 2003;88:327–331. DOI: 10.1002/jcb.10343

59. Xiang W., Kong J., Chen S., Cao L.P., Qiao G., Zheng W. et al. Cardiac hypertrophy in vitamin D receptor knockout mice: Role of the systemic and cardiac renin-angiotensin systems. Am. J. Physiol. Endocrinol. Metab. 2005;288:E125–E132. DOI: 10.1152/ajpendo.00224.2004

60. Shimada T., Yamazaki Y., Takahashi M., Hasegawa H., Urakawa I., Oshima T. et al. Vitamin D receptor-independent FGF-23 actions in regulating phosphate and Vitamin D metabolism. Am. J. Physiolol. Ren. Physiol. 2005;289:1088–1095. DOI: 10.1152/ajprenal.00474.2004

61. Grabner A., Faul C. The Role of FGF-23 and Klotho in uremic cardiomyopathy. Curr. Opin. Nephrol. Hypertens. 2016;25:314–324. DOI: 10.1097/MNH.0000000000000231.

62. Gao S., Xu J., Zhang S., Jin J. Meta-Analysis of the association between fi broblast growth factor 23 and mortality and cardiovascular events in hemodialysis patients. Blood Purif. 2019;47:24–30. DOI: 10.1159/000496220

63. Isakova T., Cai X., Lee J., Xie D., Wang X., Mehta R. et al. Longitudinal FGF-23 trajectories and mortality in patients with CKD. J. Am. Soc. Nephrol. 2018;29:579–590. DOI: 10.1681/ASN.2017070772

64. Silva A.P., Mendes F., Carias E., Goncalves R.B., Fragoso A., Dias C. et al. Plasmatic Klotho and FGF-23 levels as biomarkers of CKD-associated cardiac disease in type 2 diabetic patients. Int. J. Mol. Sci. 2019;20:1536. DOI: 10.3390/ijms20071536

65. Faul C., Amaral A.P., Oskouei B., Hu M.C., Sloan A., Isakova T. et al. FGF-23 induces left ventricular hypertrophy. J. Clin. Investig. 2011;121:4393–4408. DOI: 10.1172/JCI46122

66. Han X., Cai C., Xiao Z., Quarles L.D. FGF-23 induced left ventricular hypertrophy mediated by FGFR4 signaling in the myocardium is attenuated by soluble Klotho in mice. J. Mol. Cell Cardiol. 2019;21:66–74. DOI: 10.1016/j.yjmcc.2019.11.149

67. Faul C., Ansel P. FGF-23 induces left ventricular hypertrophy. J. Clin. Investig. 2011;121(11):4393-4408. DOI: 10.1172/JCI46122

68. Dai B., David V., Martin A., Huang J., Li H., Jiao Y. et al. A comparative transcriptome analysis identifying FGF-23 regulated genes in the kidney of a mouse CKD model. PLoS ONE. 2012;7:e44161. DOI: 10.1371/journal.pone.0044161

69. Matsui I., Oka T., Kusunoki Y., Mori D., Hashimoto N., Matsumoto A. et al. Cardiac hypertrophy elevates serum levels of fi broblast growth factor 23. Kidney Int. 2018;94:60–71. DOI: 10.1016/j.kint.2018.02.018

70. Yeung S.M.H., Binnenmars S.H., Gant C.M., Navis G., Gansevoort R.T., Bakker S.J.L. et al. Fibroblast growth factor 23 and mortality in patients with type 2 diabetes and normal or mildly impaired kidney function. Diabetes Care. 2019;42:2151–2153. DOI: 10.2337/dc19-0528

71. Nielsen T.L., Plesner L.L., Warming P.E., Mortensen O.H., Iversen K.K., Heaf J.G. FGF-23 in hemodialysis patients is associated with left ventricular hypertrophy and reduced ejection fraction. Nefrologia. 2019;39:258–268. DOI: 10.1016/j.nefro.2018.10.007

72. Gruson D., Ferracin B., Ahn S.S., Rousseau M.F. Comparison of fi broblast growth factor 23, soluble ST2 and Galectin-3 for prognostication of cardiovascular death in heart failure patients. Int. J. Cardiol. 2015;189:185–187. DOI: 10.1016/j.ijcard.2015.04.074

73. Milovanova L.Y., Kozlovskaya L.V., Milovanova S.Y., Kiyakbaev G.G., Milovanov Y.S., Taranova M.V. et al. Associations of fi broblast growth factor 23, soluble Klotho, troponin I in CKD patients. Int. Res. J. 2016;9(51):65-69. DOI: 10.18454/IRJ.2016.51.074

74. Mirza M.A.I., Hansen T., Johansson L., Ahlström H., Larsson A., Lind L., Larsson T.E. Relationship between circulating FGF-23 and total body atherosclerosis in the community. Nephrol. Dial. Transplant. 2009;24(10):3125-3131. DOI: https://DOI.org/10.1093/ndt/gfp205

75. Coen G.jirchows Archiv. 2009;454:263-271. DOI: 10.1007/s00428-008-0724-4

76. Fliser D., Kollerits B., Neyer U., Ankerst D.P., Lhotta K., Lingenhel A. et al. Fibroblast growth factor 23 (FGF-23) predicts pro-gression of chronic kidney disease. The Mild to Moderate Kidney Disease (MMKD) study. J. Am. Soc. Nephrol. 2007;18(9):2601-2608. DOI: 10.1681/ASN.2006080936

77. Grabner A., Schramm K., Silswal N., Hendrix M., Yanucil C., Czaya B. et al. FGF-23/FGFR4-mediated left ventricular hypertrophy is reversible. Sci. Rep. 2017;16:1993. DOI: 10.1038/s41598-017-02068-6

78. Leifheit-Nestle M., Grabner A., Hermann L., Richter B., Schmitz K., Fischer D.C., Yanucil C., Faul C., Haff ner D. Vitamin D treatment attenuates cardiac FGF-23/FGFR4 signaling and hypertrophy in uremic rats. Nephrol. Dial. Transpl. 2017;32:1493–1503. DOI: 10.1093/ndt/gfw454

79. Kuczera P., Adamczak M., Wiecek A. Fibroblast growth factor-23 — A potential uremic toxin. Toxins (Basel). 2016;8(12):369. DOI: 10.3390/toxins8120369

80. Neyra J.A., Hu M.C. Potential application of klotho in human chronic kidney disease. Bone. 2017;100:41–49. DOI: 10.1016/j.bone.2017.01.017

81. Hu M.C., Shiizaki K., Kuro-o M., Moe O.W. Fibroblast growth factor 23 and Klotho: Physiology and pathophysiology of an endocrine network of mineral metabolism. Annu. Rev. Physiol. 2013;75:503-533. DOI: 10.1146/annurev-physiol-030212-183727

82. Kuro-o M. Klotho and chronic kidney disease — Whats new? Nephrology, Dialysis, Transplantation. 2009;24(6):1705-1708. DOI: 10.1093/ndt/gfp069

83. Xie J., Cha S.K., An S.W., Kuro O.M., Birnbaumer L., Huang C.L. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat. Commun. 2012;3:1238. DOI: 10.1038/ncomms2240

84. Xie J., Yoon J., An S.W., Kuro-o M., Huang C.L. Soluble Klotho Protects against Uremic Cardiomyopathy Independently of Fibroblast Growth Factor 23 and Phosphate. J. Am. Soc. Nephrol. 2015;26:1150–1160. DOI: 10.1681/ASN.2014040325

85. Liu Q., Zhu L.J., Waaga-Gasser A.M., Ding Y., Cao M., Jadhav S.J. et al. The axis of local cardiac endogenous Klotho-TGF-β1-Wnt signaling mediates cardiac fi brosis in human. J. Mol. Cell Cardiol. 2019;136:113–124. DOI: 10.1016/j.yjmcc.2019.09.004

86. Seifert M.E., De Las Fuentes L., Ginsberg C., Ginsberg C., Rothstein M., Dietzen D.J. et al. Left ventricular mass progression despite stable blood pressure and kidney function in stage 3 chronic kidney disease. Am. J. Nephrol. 2014;39:392–399. DOI: 10.1159/000362251

87. Memmos E., Sarafi dis P., Pateinakis P., Tsiantoulas A., Faitatzidou D., Giamalis P. et al. Soluble Klotho is associated with mortality and cardiovascular events in hemodialysis. BMC Nephrol. 2019;11:217. DOI: 10.1186/s12882-019-1391-1

88. Kim H.J., Kang E., Oh Y.K., Kim Y.H., Han S.H., Yoo T.H. et al. The association between soluble klotho and cardiovascular parameters in chronic kidney disease: Results from the KNOW-CKD study. BMC Nephrol. 2018;5:51. DOI: 10.1186/s12882-018-0851-3

89. Li F., Yao Q., Ao L., Cleveland J.C. Jr., Dong N., Fullerton D.A., Meng X. Klotho suppresses high phosphate-induced osteogenic responses in human aortic valve interstitial cells through inhibition of Sox9. J. Mol. Med. 2017;95:739–751. DOI: 10.1007/s00109-017-1527-3

90. Hu M.C., Shi M., Gillings N., Flores B., Takahashi M., Kuro-O. M., Moe O.W. Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int. 2017;91:1104–1114. DOI: 10.1016/j.kint.2016.10.034

91. Lu X., Hu M.C. Klotho/FGF-23 Axis in Chronic Kidney Disease and Cardiovascular Disease. Kidney Dis. 2017;3:15–23. DOI: 10.1159/000452880

92. Claes K.J., Viaene L., Heye S., Meijers B., d’Haese P., Evenepoel P. Sclerostin: Another vascular calcifi cation inhibitor? J. Clin. Endocrinol. Metab. 2013;98(8):3221–3228. DOI: 10.1210/jc.2013-1521

93. Brandenburg V.M., Kramann R., Koos R., Krüger T., Schurgers L., Mühlenbruch G. et al. Relationship between sclerostin and cardiovascular calcifi cation in hemodialysis patients: a cross-sectional study. BMC Nephrol. 2013;14:219. DOI: 10.1186/1471-2369-14-219

94. Winkler D.G., Sutherland M.K., Geoghegan J.C., Yu C., Hayes T., Skonier J.E. et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22:6267–6276. DOI: 10.1093/emboj/cdg599

95. Brunkow M.E., Gardner J.C., Van Ness J., Paeper B.W., Kovacevich B.R., Proll S. et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot containing protein. Am. J. Hum. Genet. 2001;68:577–589. DOI: 10.1086/318811

96. Balemans W., Ebeling M., Patel N., Van Hul E., Olson P., Dioszegi M. et al. Increased bone density in sclerosteosis is due to the defi ciency of a novel secreted protein (SOST). Hum. Mol. Genet. 2001;10:537–543. DOI: 10.1093/hmg/10.5.537

97. Hsu B.-G., Liou H.-H., Lee C.-J., Chen Y.-C., Ho G.-J., Lee M.-C. Serum sclerostin as an independent marker of peripheral arterial stiff ness in renal transplantation recipients a cross-sectional study. Medicine (Baltimore). 2016;95(15):e3300. DOI: 10.1097/MD.0000000000003300

98. Brandenburg V.M., Floege J. Adynamic bone disease—bone and beyond. NDT Plus. 2008;3:135–147. DOI: 10.1093/ndtplus/sfn040

99. Register T.C., Hruska K.A., Divers J., Bowden D.W., Palmer N.D., Carr J.J. et al. Sclerostin is positively associated with bone mineral density in men and women and negatively associated with carotid calcifi ed atherosclerotic plaque in men from the African American-Diabetes Heart Study. J. Clin. Endocrinol. Metab. 2014;99(1):315–321. DOI: 10.1210/jc.2013-3168

100. Kanbay M., Solak Y., Siriopol D., Aslan G., Afsar B., Yazici D., Covic A. Sclerostin, cardiovascular disease and mortality: A systematic review and meta-analysis. Int. Urol. Nephrol. 2016;48:2029–2042. DOI: 10.1007/s11255-016-1387-8

101. Kanbay M., Siriopol D., Saglam M., Kurt Y.G., Gok M., Cetinkay H. et al. Serum sclerostin and adverse outcomes in nondialyzed chronic kidney disease patients. J. Clin. Endocrinol. Metab. 2014;99:E1854–E1861. DOI: 10.1210/jc.2014-2042

102. Drechsler C., Evenepoel P., Vervloet M.G., Wanner C., Ketteler M., Marx N. et al. NECOSAD Study Group. High levels of circulating sclerostin are associated with better cardiovascular survival in incident dialysis patients: Results from the NECOSAD study. Nephrol. Dial. Transpl. 2015;30:288–293. DOI: 10.1093/ndt/gfu301

103. Milovanova L.Yu., Milovanov Yu.S., Kudryavtseva D.V., Markina M.M., Milovanova S.Yu., Kozlovskaya L.V. et al. Role of the morphogenetic proteins FGF-23 and Klotho and the glycoprotein sclerostin in the assessment of the risk of cardiovascular diseases and the prognosis of chronic kidney disease. Terapevticheskii arkhiv. 2015;87(6):10–16. (in Russian). DOI: 10.17116/terarkh201587610-16

104. Monroe D.G., McGee-Lawrence M.E., Oursler M.J., Westendorf J.J. Update on Wnt signaling in bone cell biology and bone disease. Gene. 2012;492(1):1–18. DOI: 10.1016/j.gene.2011.10.044

105. Moester M.J., Papapoulos S.E., Löwik C.W.G.M., van Bezooijen R.L. Sclerostin: current knowledge and future perspectives. Calcif. Tissue. Int. 2010;87(2):99–10. DOI: 10.1007/s00223-010-9372-1

106. Mukhin N.A., Milovanov Y.S., Kozlov skaya L.V., Dobrosmyslov I.A., Milovanova L.Yu. The serum level of the morphogenetic protein fi broblast growth factor 23 (FGF-23) as a marker for the effi - ciency of hyperphosphatemia therapy with phos phate-binding agents in chronic kidney disease. Terapevti cheskii arkhiv. 2016;88(4):41–45. (in Russian). DOI: 10.17116/terarkh201688441-45

107. Milovanova L.Y., Fomin V.V., Moiseev SV. Eff ect of essential amino acid кetoanalogues and protein restriction diet on morphogenetic proteins (FGF-23 and Кlotho) in 3b–4 stages chronic кidney disease patients: a randomized pilot study. Clinical and Experimental Nephrology. 2020;22(5). DOI:10.1007/s10157-018-1591-1

108. Milovanova L.Y., Kozlovskaya L.V., Milovanova S.Y., Plotnikova A.A., Fomin V.V., Mukhin N.A., Lebedeva M.V. Infl uence of traditional cardio-nephroprotective therapy on cardiovascular risk markers (FGF-23, Klotho) in patients with chronic kidney disease. International Research Journal. 2016;(38)5:39–41. DOI: 10.18454/IRJ.2227-6017

109. Antoniucci D.M., Yamashita T., Portale A.A. Dietary Phosphorus Regulates Serum Fibroblast Growth Factor-23 Concentrations in Healthy Men. J. Clin. Endocrinol. Metab. 2006;91:3144–3149. DOI: 10.1210/jc.2006-0021

110. Ferrari S.L., Bonjour J., Rizzoli R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J. Clin. Endocrinol. Metab. 2005;90:1519–1524. DOI: 10.1210/jc.2004-1039

111. Burnett S.M., Gunawardene S.C., Bringhurst F.R., Jüppner H., Lee H., Finkelstein J.S. Regulation of C-terminal and intact FGF23 by dietary phosphate in men and women. J. Bone Miner. Res. 2006; 21:1187–1196. DOI: 10.1359/jbmr.060507

112. Tsai W., Wu H., Peng Y., Hsu S., Chiu Y., Yang J. et al. Shortterm eff ects of very-low-phosphate and low-phosphate diets on fi broblast growth factor 23 in hemodialysis patients: a randomized crossover trial. Clin. J. Am. Soc. Nephrol. 2019;14:1475–1483. DOI: 10.2215/CJN.04250419

113. Moe S.M., Chen N.X., Seifert MF., Sinders RM., Duan D., Chen X. et al. A rat model of chronic kidney disease-mineral bone disorder. Kidney Int. 2009;75:176–184. DOI: 10.1038/ki.2008.456

114. Moe S.M., Zidehsarai M.P., Chambers M.A., Jackman L.A., Radcliff e J.S., Trevino L.L. et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2011;6:257–264. DOI: 10.2215/CJN.05040610

115. Scialla J.J., Appel L.J., Wolf M., Yang W., Zhang X., Sozio S.M. et al. Plant protein intake is associated with fi broblast growth factor 23 and serum bicarbonate levels in patients with chronic kidney disease: the chronic renal insuffi ciency cohort study. J. Ren Nutr. 2012;22:37–388. DOI: 10.1053/j.jrn.2012.01.026

116. Shinaberger C.S., Greenland S., Kopple J.D., Van Wyck D., Mehrotra R., Kovesdy CP., Kalantar-Zadeh K. Is controlling phosphorus by decreasing dietary protein intake benefi cial or harmful in persons with chronic kidney disease? Am. J. Clin. Nutr. 2008;88:1511–1518. DOI: 10.3945/ajcn.2008.26665

117. Di Iorio B., Di Micco L., Torraca S., Sirico M.L., Russo L., Pota A. et al. Acute eff ects of very-low-protein diet on FGF-23 levels: a randomized study. Clin. J. Am. Soc. Nephrol. 2012;7:581–587. DOI: 10.2215/CJN.07640711

118. Oliveira R.B., Cancela A.L., Graciolli F.G., Dos Reis L.M., Draibe S.A., Cuppari L. et al. Early control of PTH and FGF-23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin. J. Am. Soc. Nephrol. 2010;5:286–291. DOI: 10.2215/CJN.05420709

119. Block G.A., Wheeler D.C., Persky M.S., Kestenbaum B., Ketteler M., Spiegel D.M. et al. Eff ects of phosphate binders in moderate CKD. J. Am. Soc. Nephrol. 2012;23:1407–1415. DOI: 10.1681/ASN.2012030223

120. Patel L., Bernard L.M., Elder G.J. Sevelamer versus calcium-based binders for treatment of hyperphosphatemia in CKD: a meta-analysis of randomized controlled trials. Clin. J. Am. Soc. Nephrol. 2016;11:232–244. DOI: 10.2215/CJN.06800615

121. Yokoyama K., Hirakata H., Akiba T., Fukagawa M., Nakayama M., Sawada K. et al. Ferric citrate hydrate for the treatment of hyperphosphatemia in nondialysis-dependent CKD. Clin. J. Am. Soc. Nephrol. 2014;9:543–552. DOI: 10.2215/CJN.05170513

122. Gonzalez-Parra E., Gonzalez-Casaus M.L., Galán A., Martinez-Calero A., Navas V., Rodriguez M., Ortiz A. Lanthanum carbonate reduces FGF-23 in chronic kidney disease stage 3 patients. Nephrol. Dial. Transplant. 2011;26:2567–2571. DOI: 10.1093/ndt/gfr144

123. Isakova T., Barchi-Chung A., Enfi eld G., Smith K., Vargas G., Houston J. et al. Eff ects of dietary phosphate restriction and phosphate binders on FGF-23 levels in CKD. Clin. J. Am. Soc. Nephrol. 2013;8:1009–1018. DOI: 10.2215/CJN.09250912

124. Jamal S.A., Vandermeer B., Raggi P., Mendelssohn D.C., Chatterley T., Dorgan M. et al. Eff ect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet. 2013;382:1268–1277. DOI: 10.1016/S0140-6736(13)60897-1

125. Block G.A., Pergola P.E., Fishbane S., Martins J.G., LeWinter R.D., Uhlig K. et al. Eff ect of ferric citrate on serum phosphate and fi broblast growth factor 23 among patients with nondialysis-dependent chronic kidney disease: path analyses. Nephrol. Dial. Transplant. 2018;34:1115–1124. DOI: 10.1093/ndt/gfy318

126. Block G.A., Block M.S., Smits G., Mehta R., Isakova T., Wolf M., Chertow G.M. A Pilot randomized trial of ferric citrate coordination complex for the treatment of advanced CKD. J. Am. Soc. Nephrol. 2019;30:1495–1504. DOI: 10.1681/ASN.2018101016

127. Francis C., Courbon G., Gerber C., Neuburg S., Wang X., Dussold C. et al. Ferric citrate reduces fi broblast growth factor 23 levels and improves renal and cardiac function in a mouse model of chronic kidney disease. Kidney Int. 2019. DOI: 10.1016/j.kint.2019.07.026

128. Katai K., Tanaka H., Tatsumi S., Fukunaga Y., Genjida K., Morita K. et al. Nicotinamide inhibits sodium-dependent phosphate cotransport activity in rat small intestine. Nephrol. Dial. Transplant. 1999;14:1195–1201. DOI: 10.1093/ndt/14.5.1195

129. Eto N., Miyata Y., Ohno H., Yamashita T. Nicotinamide prevents the development of hyperphosphataemia by suppressing intestinal sodium-dependent phosphate transporter in rats with adenine-induced renal failure. Nephrol. Dial. Transplant. 2005;20:1378–1384. DOI: 10.1093/ndt/gfh781

130. Young D.O., Cheng S.C., Delmez J.A., Coyne D.W. The eff ect of oral niacinamide on plasma phosphorus levels in peritoneal dialysis patients. Perit. Dial. Int. 2009;29:562–567.

131. Shahbazian H., Zafar Mohtashami A., Ghorbani A., Ghorbani A., Abbaspour M.R., Belladi Musavi S.S., Musavi B. Oral nicotinamide reduces serum phosphorus, increases HDL, and induces thrombocytopenia in hemodialysis patients: a double-blind randomized clinical trial. Nefrología. (Engl. Ed) 2011;31:58–65

132. Vasantha J., Soundararajan P., Vanitharani N., Kannan G., Thennarasu P., Neenu G., Reddy C.U. Safety and effi cacy of nicotinamide in the management of hyperphosphatemia in patients on hemodialysis. Indian J. Nephrol. 2011;21:245. DOI: 10.4103/0971-4065.83735

133. Takahashi Y., Tanaka A., Nakamura T., Fukuwatari T., Shibata K., Shimada N. et al. Nicotinamide suppresses hyperphosphatemia in hemodialysis patients. Kidney Int. 2004;65:1099–1104. DOI: 10.1111/j.1523-1755.2004.00482.x

134. Cheng S.C., Young D.O., Huang Y., Delmez J.A., Coyne D.W. A randomized., double-blind., placebo-controlled trial of niacinamide for reduction of phosphorus in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2008;3:1131–1138. DOI: 10.2215/CJN.04211007

135. Maltese G., Karalliedde J. The putative role of the antiageing protein Klotho in cardiovascular and renal disease. Int. Hypertens. 2012;12. DOI: 10.1155/2012/757469

136. Yoon H.E., Ghee J.Y., Piao S., Song J.-H., Han D.H., Kim S. et al. Angiotensin II blockage upregulates the expression of Klotho, the anti-ageing gene., in an experimental model of chronic cyclosporine nephropathy. Nephrol. Dial. Transplant. 2011;26:800–813. DOI: https://DOI.org/10.1093/ndt/gfq537

137. Milovanova L.Y., Mukhin N.A., Kozlovskaya L.V., Milovanov Yu.S., Kiyakbaev G.G., Rogova I.V., Lebedeva M.V. Decreased serum levels of Klotho protein in CKD patients: clinical importance. Annals of the Russian Academy of Medi cal Science. 2016;71(4):288–296. (in Russian)]. DOI: 10.15690/vramn581

138. Milovanov Yu.S., Mukhin NA., Kozlovskaya L.V. Impact of anemia correction on the production of the circulating morphogenetic protein α-Klotho in patients with Stages 3B–4 chronic kidney disease: A new direction of cardionephroprotection. Ter. Arkh. 2016;88(6):21–25. (in Russian). DOI: 10.17116/terarkh201688621-25

139. Lau W.L., Leaf E.M., Hu M.C., Takeno M.M., Kuro-o M., Moe O.W., Giachelli C.M. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcifi cation in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012;82(12):1261–1270. DOI: 10.1038/ki.2012.322

140. McClung M.R. Sclerostin antibodies in osteoporosis: Latest evidence and therapeutic potential. Ther. Adv. Musculoskelet. Dis. 2017;9:263–270. DOI: 10.1177/1759720X17726744


Review

For citations:


Milovanova L.Yu., Beketov V.D., Milovanova S.Yu., Taranova M.V., Filippova A.A., Pasechnik A.I. Biomarkers of heart and vascular lesions in the framework of mineral and bone disorders in chronic kidney disease, correction possibilities. Clinical Medicine (Russian Journal). 2021;99(4):245-258. (In Russ.) https://doi.org/10.30629/0023-2149-2021-99-4-245-258

Views: 1237


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)