New groups of hypolipidemic medications based on inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9). Part 1
https://doi.org/10.30629/0023-2149-2020-98-11-12-739-744
Abstract
Hypolipidemic therapy is one of the essential components for the management of patients with cardiovascular diseases (CVD). In this regard, the main task of modern research is to find new targets for creating additional effective groups of hypolipidemic medications. Canadian and French research groups led by N. Seidah and M. Abifadel discovered a new enzyme — proprotein convertase subtilisin-kexin type 9 (PCSK9) in 2003. It turned out to play an important role in lipid metabolism later. The main mechanism of action of PCSK9 is to regulate the density of low-density lipoprotein receptors (LDLR) in the cell membrane of hepatocytes. Increased activity of PCSK9 accelerates the degradation of LDL significantly, and leads to an increase in the concentration of atherogenic classes of lipoproteins — low-density lipoproteins (LDL). In contrast, reduced PCSK9 activity is accompanied by a decrease in LDL concentrations and a reduced risk of developing atherosclerosis and CVD. The second of the recently discovered and less studied mechanism of PCSK9 protearogenic action is an increase in inflammatory processes in the atherosclerotic plaque. Considering this adverse contribution of PCSK9 to the development and progression of atherosclerosis and CVD, the main task of the researchers was to develop medications that inhibit THIS enzyme. Several new groups of medications that target the stages of biosynthesis and the function of PCSK9 have been developed by now. In this article, we will focus on details discussing the mechanisms of action and effectiveness of the following groups of hypolipidemic medications: anti-PCSK9 monoclonal antibodies (alirocumab, evolocumab), small interfering ribonucleic acids (incliciran), and antisense nucleotides.
About the Author
A. M. ChaulinRussian Federation
443070, Samara; 443099, Samara
References
1. Chaulin A.M., Grigorieva Y.V., Suvorova G.N., Duplyakov D.V. Methods of Mod-eling of Atherosclerosis in Rabbits. Modern problems of science and education. 2020;5. (in Russian). URL: http://science-education.ru/ru/article/view?id=30101. DOI: 10.17513/spno.30101.
2. Chaulin A.M., Karslyan L.S., Grigoriyeva E.V. et al. Clinical and Diag-nostic Value of Cardiac Markers in Human Biological Fluids. Kar-diologiia. 2019;59(11):66–75. (in Russian). DOI:10.18087/cardio.2019.11.n414.
3. ЧChaulin A.M., Duplyakov D.V. Biomarkers of acute myocardial infarction: diag-nostic and prognostic value. Part 1. Journal of Clinical Practice. 2020;11(3):75–84. (in Russian). DOI: 10.17816/clinpract34284
4. Gasanov M.Z., Bati-ushin M.M., Terentev V.P. Professor Alexander I. Ignatowski a foun-der of the theory of atherosclerosis. The Russian Archives of Internal Medicine. 2017;7(6):407–414. (in Russian). DOI: 10.20514/2226-6704-2017-7-6-407-414
5. Kukharchuk V.V. N.N. Anich-kov (1885–1964). The Journal of Atherosclerosis and Dyslipidemias (Ateroskleroz i Dislipidemii). 2010;1(1):58–60. (in Russian). https://elibrary.ru/item.asp?id=20264539
6. Susekov A.V., Nikitin A.E. The past and near future of statin therapy in Russia. Lechebnoye delo. 2018;3:30–37. (in Russian). https://www.elibrary.ru/item.asp?id=36530262
7. Malay L.N. Statins in the treatment and pre-vention of cardiovascular diseases: repetition of the past and opti-mism for the future. Rational Pharmacotherapy in Cardiology. 2014;10(5):513–524 (in Russian). DOI: 10.20996/1819-6446-2014-10-5-513-524
8. Sergienko I.V. The story of statins, The Journal of Atherosclerosis and Dyslipidemias (Ateroskleroz i Dislipidemii). 2011;1:57–66. (in Russian). URL: https://cyberleninka.ru/article/n/istoriya-poyavleniya-statinov
9. Grundy S.M., Cleeman J.I., Merz C.N. et al. Implications of re-cent clinical trials for the National Cholesterol Education Pro-gram Adult Treatment Panel III Guidelines. J. Am. Coll. Cardiol. 2004;44(3):720–732. DOI: 10.1016/j.jacc.2004.07.001
10. Shepherd J., Cobbe S.M., Ford I. et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N. Engl. J. Med. 1995;333(20):1301–1307. DOI: 10.1056/NEJM199511163332001
11. Haria M., McTavish D. Pravastatin. A reappraisal of its pharma-cological properties and clinical effectiveness in the management of coronary heart disease. Drugs. 1997;53(2):299–336. DOI: 10.2165/00003495-199753020-00008
12. Ahsan F., Oliveri F., Goud H.K. et al. Pleiotropic Effects of Statins in the Light of Non-Alcoholic Fatty Liver Disease and Non-Alco-holic Steatohepatitis. Cureus. 2020;12(9):e10446. DOI: 10.7759/cureus.10446
13. Turner R.M., Pirmohamed M. Statin-Related Myotoxicity: A Com-prehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components. J. Clin. Med. 2019;9(1):22. DOI: 10.3390/jcm9010022
14. Nguyen K.A., Li L., Lu D. et al. A comprehensive review and me-ta-analysis of risk factors for statin-induced myopathy. Eur. J. Clin. Pharmacol. 2018;74(9):1099–1109. DOI: 10.1007/s00228-018-2482-9
15. Seidah N.G., Benjannet S., Wickham L. et al. The secretory propro-tein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl. Acad. Sci. USA. 2003;100(3):928–933. DOI: 10.1073/pnas.0335507100
16. Abifadel M., Varret M., Rabes J.P. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 2003;34(2):154–156. DOI: 10.1038/ng1161
17. Maxwell K.N., Fisher E.A., Breslow J.L. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic retic-ulum compartment. Proc. Natl. Acad. Sci. USA. 2005;102(6):2069– 2074. DOI: 10.1073/pnas.0409736102
18. Tavori H., Fan D., Blakemore J.L. et al. Serum proprotein convertase subtilisin/kexin type 9 and cell surface low-density lipoprotein receptor: evidence for a reciprocal regulation. Circulation. 2013;127(24):2403– 2413. DOI: 10.1161/CIRCULATIONAHA.113.001592
19. Abifadel M., Guerin M., Benjannet S., Rabes J.P. et al. Identification and characterization of new gain-of-function mutations in the PC-SK9 gene responsible for autosomal dominant hypercholesterolemia. Atherosclerosis. 2012;223(2):394–400. DOI: 10.1016/j.atherosclero-sis.2012.04.006
20. Cohen J.C., Boerwinkle E., Mosley T.H. Jr, Hobbs H.H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 2006;354(12):1264–1272. DOI: 10.1056/NEJMoa054013
21. Scartezini M., Hubbart C., Whittall R.A. et al. The PCSK9 gene R46L variant is associated with lower plasma lipid levels and cardiovascu-lar risk in healthy U.K. men. Clin. Sci. (Lond). 2007;113(11):435– 441. DOI: 10.1042/CS20070150
22. Chaulin A.M., Duplyakov D.V. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardio-vascular diseases. Part 1. Kardiologiya: novosti, mneniya, obuchenie [Cardiology: News, Opinions, Training]. 2019;7(2):45–57. (In Russian). DOI: 10.24411/2309-1908-2019-12005
23. Tóth Š., Fedačko J., Pekárová T. et al. Elevated Circulating PCSK9 Concentrations Predict Subclinical Atherosclerotic Changes in Low Risk Obese and Non-Obese Patients. Cardiol. Ther. 2017;6(2):281– 289. DOI: 10.1007/s40119-017-0092-8
24. Chaulin A.M., Duplyakov D.V. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 2. Kardiologiya: novosti, mneniya, obuchenie Cardiology: News, Opinions, Training. 2019;7(4):24–35. (in Russian). DOI: 10.24411/2309-1908-2019-14004
25. Chaulin A.M., Mazaev A.Yu., Aleksandrov A.G. The role of proprotein convertase subtilisin/kexin of type 9 (pcsk-9) in cholesterol metabolism and new opportunities of lipid corrective therapy. International Research Journal. 2019;4–1(82):124–126. (in Russian). DOI: 10.23670/IRJ.2019.82.4.025
26. Chan J.C., Piper D.E., Cao Q. et al. A proprotein convertase sub-tilisin/kexin type 9 neutralizing antibody reduces serum choles-terol in mice and nonhuman primates. Proc. Natl. Acad. Sci. USA. 2009;106(24):9820–9825. DOI: 10.1073/pnas.0903849106
27. Robinson J.G., Farnier M., Krempf M. et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 2015;372(16):1489–1499. DOI: 10.1056/NEJMoa1501031
28. Sabatine M.S., Giugliano R.P., Wiviott S.D. et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 2015;372(16):1500–1509. DOI: 10.1056/NEJMoa1500858
29. Mayor S. PCSK9 inhibitors reduce cardiovascular events, prelimi-nary data show. BMJ. 2015;350:h1508. DOI: 10.1136/bmj.h1508
30. Navarese E.P., Kolodziejczak M., Schulze V. et al. Effects of Propro-tein Convertase Subtilisin/Kexin Type 9 Antibodies in Adults With Hypercholesterolemia: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2015;163(1):40–51. DOI: 10.7326/M14-2957
31. Cainzos-Achirica M., Martin S.S., Cornell J.E., Mulrow C.D., Gual-lar E. PCSK9 Inhibitors: A New Era in Lipid-Lowering Treatment? Ann. Intern. Med. 2015;163(1):64–65. DOI: 10.7326/M15-0920
32. Schmidt A.F., Pearce L.S., Wilkins J.T. et al. PCSK9 monoclonal an-tibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2017;4(4):CD011748. DOI: 10.1002/14651858.CD011748.pub2
33. Schmidt A.F., Carter J.L., Pearce L.S. et al. PCSK9 monoclonal an-tibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2020;10:CD011748. DOI: 10.1002/14651858.CD011748.pub3
34. Sabatine M.S., Giugliano R.P., Keech A.C. et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017;376(18):1713–1722. DOI: 10.1056/NEJMoa1615664
35. Schwartz G.G., Steg P.G., Szarek M. et al. Alirocumab and Cardio-vascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018;379(22):2097–2107. DOI: 10.1056/NEJMoa1801174
36. Farnier M., Colhoun H.M., Sasiela W.J. et al. Long-term treatment adherence to the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab in 6 ODYSSEY Phase III clinical studies with treatment duration of 1 to 2 years. J. Clin. Lipidol. 2017;11(4):986–997. DOI: 10.1016/j.jacl.2017.05.016
37. Arrieta A., Page T.F., Veledar E., Nasir K. Economic Evaluation of PCSK9 Inhibitors in Reducing Cardiovascular Risk from Health Sys-tem and Private Payer Perspectives. PLoS One. 2017;12(1):e0169761. DOI: 10.1371/journal.pone.0169761
38. Fire A., Xu S., Montgomery M.K., Kostas S.A. et al. Potent and spe-cific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–811. DOI: 10.1038/35888
39. URL: https://www.webcitation.org/61CfnnPLi?url=http://www.nobelprize.org/nobel_prizes/medicine/laureates/2006/adv.html (Available at 15.11.2020).
40. Bernards R. Exploring the uses of RNAi–gene knockdown and the Nobel Prize. N. Engl. J. Med. 2006;355(23):2391–2393. DOI: 10.1056/NEJMp068242
41. Carthew R.W., Sontheimer E.J. Origins and Mechanisms of miR-NAs and siRNAs. Cell. 2009;136(4):642–655. DOI: 10.1016/j. cell.2009.01.035
42. Fitzgerald K., Frank-Kamenetsky M., Shulga-Morskaya S. et al. Effect of an RNA interference drug on the synthesis of pro-protein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet. 2014;383(9911):60-68. DOI: 10.1016/S0140-6736(13)61914–5
43. Nair J.K., Willoughby J.L., Chan A. et al. Multivalent N-acetyl-galactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 2014;136(49):16958–16961. DOI: 10.1021/ja505986a
44. Khvorova A. Oligonucleotide Therapeutics -A New Class of Cho-lesterol-Lowering Drugs. N. Engl. J. Med. 2017;376(1):4–7. DOI: 10.1056/NEJMp1614154
45. Ray K.K., Landmesser U. Leiter LA, et al. Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol. N. Engl. J. Med. 2017;376(15):1430–1440. DOI: 10.1056/NEJMoa1615758
46. Ray K.K., Stoekenbroek R.M., Kallend D. et al. Effect of an siR-NA Therapeutic Targeting PCSK9 on Atherogenic Lipoproteins: Prespecified Secondary End Points in ORION 1. Circulation. 2018;138(13):1304–1316. DOI: 10.1161/CIRCULATIONA-HA.118.034710
47. Bennett C.F., Swayze E.E. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 2010;50:259–293. DOI: 10.1146/annurev.pharmtox.010909.105654
48. Graham M.J., Lemonidis K.M., Whipple C.P. et al. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J. Lipid. Res. 2007;48(4):763–767. DOI: 10.1194/jlr.C600025-JLR200
49. Gupta N., Fisker N., Asselin M.C. et al. A locked nucleic acid anti-sense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One. 2010;5(5):e10682. DOI: 10.1371/journal.pone.0010682
50. Lindholm M.W., Elmén J., Fisker N. et al. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol. Ther. 2012;20(2):376–381. DOI: 10.1038/ mt.2011.260
51. van Poelgeest E.P., Hodges M.R., Moerland M. et al. Antisense-me-diated reduction of proprotein convertase subtilisin/kexin type 9 (PC-SK9): a first-in-human randomized, placebo-controlled trial. Br. J. Clin. Pharmacol. 2015;80(6):1350–1361. DOI: 10.1111/bcp.12738
52. van Poelgeest E.P., Swart R.M., Betjes M.G. et al. Acute kidney injury during therapy with an antisense oligonucleotide directed against PCSK9. Am. J. Kidney Dis. 2013;62(4):796–800. DOI: 10.1053/j.ajkd.2013.02.359
Review
For citations:
Chaulin A.M. New groups of hypolipidemic medications based on inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9). Part 1. Clinical Medicine (Russian Journal). 2020;98(11-12):739-744. (In Russ.) https://doi.org/10.30629/0023-2149-2020-98-11-12-739-744