Preview

Клиническая медицина

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Влияние микробиоты кишечника на развитие и течение заболеваний у пациентов с хронической болезнью почек в сочетании с сердечно-сосудистой патологией

https://doi.org/10.30629/0023-2149-2025-103-8-9-589-595

Аннотация

Состав микробиоты кишечника связан с протеканием таких заболеваний, как хроническая болезнь почек (ХБП), артериальная гипертензия (АГ) и ишемическая болезнь сердца (ИБС). У пациентов с ХБП, АГ и ИБС часто наблюдаются изменения в составе микробиоты, которые могут быть связаны с увеличением воспалительных процессов, нарушением обмена веществ и другими факторами, способствующими прогрессированию этих заболеваний. Микробиота кишечника может меняться в ответ на лечение, улучшая состояние пациента. В данном обзоре отмечен уремический токсин, продуцируемый кишечной микробиотой — фенилацетилглутамин (ФАГ), который может стать отличным показателем вероятности рестеноза или гиперплазии интимы в стенте. Увеличение числа бактерий рода Lachnospira может привести к послеоперационным осложнениям после аортокоронарного шунтирования.

Об авторах

А. Т. Классова
ФГБОУ ВО «Ставропольский государственный медицинский университет» Минздрава России
Россия

Классова Айгуль Тахировна — ассистент кафедры поликлинической терапии

Ставрополь 



Н. В. Агранович
ФГБОУ ВО «Ставропольский государственный медицинский университет» Минздрава России
Россия

Агранович Надежда Владимировна — д-р мед. наук, профессор, заведующая кафедрой поликлинической терапии

Ставрополь 



А. С. Анопченко
ФГБОУ ВО «Ставропольский государственный медицинский университет» Минздрава России
Россия

Анопченко Алена Сергеевна — канд. мед. наук, доцент кафедры поликлинической терапии

Ставрополь 



А. О. Агранович
ФГБОУ ВО «Ставропольский государственный медицинский университет» Минздрава России
Россия

Агранович Андрей Олегович — канд. мед. наук, ассистент кафедры неврологии и нейрореабилитации

Ставрополь 



Список литературы

1. Miyauchi E. et al. The impact of the gut microbiome on extraintestinal autoimmune diseases. Nat. Rev. Immunol. 2023;23(1):9– 23. DOI: 10.1038/s41577-022-00727-y

2. McCulloch J.A. et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 2022;28(3):545–556. DOI: 10.1038/s41591-022-01698-2

3. World health statistics 2023: monitoring health for the SDGs, sustainable development goals. [Electronic resource]. URL: https://www.who.int/publications/i/item/9789240074323

4. Sircana A. et al. Gut microbiota, hypertension and chronic kidney disease: Recent advances. Pharmacological Research. 2019;144:390– 408. DOI: 10.1016/j.phrs.2018.01.013

5. Ryabov V.V. et al. Coronary stent technology and the role of inflammation in the atherogenesis: problems and prospects. Bûll. sib. med. 2021;20(1):200–212. DOI: 10.20538/1682-0363-2021-1-200-212

6. Wong J. et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am. J. Nephrol. 2014;39(3):230–237. DOI: 10.1159/000360010

7. Jiang S. et al. A reduction in the butyrate producing species Roseburia spp. and Faecalibacterium prausnitzii is associated with chronic kidney disease progression. Antonie van Leeuwenhoek. 2016;109(10):1389–1396. DOI: 10.1007/s10482-016-0737-y

8. Yang Z. et al. Gut microbiota and hypertension: association, mechanisms and treatment. Clinical and Experimental Hypertension. 2023;45(1):2195135. DOI: 10.1080/10641963.2023.2195135

9. Yang T. et al. The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease. Nat. Rev. Nephrol. 2018;14(7):442–456. DOI: 10.1038/s41581-018-0018-2

10. Li J. et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. DOI: 10.1186/s40168-016-0222-x

11. Dinakis E. et al. Association Between the Gut Microbiome and Their Metabolites With Human Blood Pressure Variability. Hypertension. 2022;79(8):1690–1701. DOI: 10.1161/HYPERTENSIONAHA.122.19350

12. Mushtaq N. et al. Molecular characterization of alterations in the intestinal microbiota of patients with grade 3 hypertension. Int. J. Mol. Med. 2019. DOI: 10.3892/ijmm.2019.4235

13. Larabi A., Barnich N., Nguyen H.T.T. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy. 2020;16(1):38–51. DOI: 10.1080/15548627.2019.1635384

14. Sircana A. et al. Gut microbiota, hypertension and chronic kidney disease: Recent advances. Pharmacological Research. 2019;144:390–408. DOI: 10.1016/j.phrs.2018.01.013

15. Wilck N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551(7682):585–589. DOI: 10.1038/nature24628

16. Yan X. et al. Intestinal Flora Modulates Blood Pressure by Regulating the Synthesis of Intestinal-Derived Corticosterone in High SaltInduced Hypertension. Circulation Research. 2020;126(7):839–853. DOI: 10.1161/CIRCRESAHA.119.316394

17. Zhu Q. et al. Dysbiosis signatures of gut microbiota in coronary artery disease. Physiological Genomics. 2018;50(10):893–903. DOI: 10.1152/physiolgenomics.00070.2018

18. Fan Y. et al. Microbiota-related metabolites fueling the understanding of ischemic heart disease. Imeta. 2023;2(2):e94. DOI: 10.1002/imt2.94

19. Yoshida N., Yamashita T., Hirata K. Gut Microbiome and Cardiovascular Diseases. Diseases. 2018;6(3):56. DOI: 10.3390/diseases6030056

20. Jin M. et al. The role of intestinal microbiota in cardiovascular disease. J. Cell. Mol. Med. 2019;23(4):2343–2350. DOI: 10.1111/jcmm.14195

21. Horvath A. et al. Effects of a multispecies synbiotic on glucose metabolism, lipid marker, gut microbiome composition, gut permeability, and quality of life in diabesity: a randomized, double-blind, placebo-controlled pilot study. Eur. J. Nutr. 2020;59(7):2969–2983. DOI: 10.1007/s00394-019-02135-w

22. Robles‐Vera I. et al. Changes to the gut microbiota induced by losartan contributes to its antihypertensive effects. British J. Pharmacology. 2020;177(9):2006–2023. DOI: 10.1111/bph.14965

23. Pribylova N.N. et al. Endothelial dysfunction, vascular stiffness and their correction with perindopril, losartan in patients with ischemic heart disease, arterial hypertension and chronic kidney disease after coronary stenting. Humans and their Health. 2022;25(3):15–23. DOI: 10.21626/vestnik/2022-3/02

24. Santisteban M.M. et al. Hypertension-Linked pathophysiological alterations in the gut. Circulation Research. 2017;120(2):312–323. DOI: 10.1161/CIRCRESAHA.116.309006

25. Yoo H.H. et al. Effects of orally administered antibiotics on the bioavailability of amlodipine: gut microbiota-mediated drug interaction. Journal of Hypertension. 2016;34(1):156–162. DOI: 10.1097/HJH.0000000000000773

26. Song Y. et al. Gut microbiota-dependent phenylacetylglutamine in cardiovascular disease: current knowledge and new insights. Front. Med. 2024;18(1):31–45. DOI: 10.1007/s11684-024-1055-9

27. Liu M. et al. Cardiovascular disease and its relationship with chronic kidney disease. Eur. Rev. Med. Pharmacol. Sci. 2014;18(19):2918– 2926. PMID: 25339487

28. Hsu C.-N., Tain Y.-L. Chronic kidney disease and gut microbiota: what is their connection in early life? Int. J. Mol. Sci. 2022;23(7):3954. DOI: 10.3390/ijms23073954

29. Liu Y. et al. Phenylacetylglutamine is associated with the degree of coronary atherosclerotic severity assessed by coronary computed tomographic angiography in patients with suspected coronary artery disease. Atherosclerosis. 2021;333:75–82. DOI: 10.1016/j.atherosclerosis.2021.08.029

30. Ottosson F. et al. The gut microbiota-related metabolite phenylacetyl glutamine associates with increased risk of incident coronary artery disease. Journal of Hypertension. 2020;38(12):2427–2434. DOI: 10.1097/HJH.0000000000002569

31. Menni C. et al. Gut microbial diversity is associated with lower arterial stiffness in women. European Heart Journal. 2018;39(25):2390– 2397. DOI: 10.1093/eurheartj/ehy226

32. Yu F. et al. Phenylacetylglutamine, a Novel Biomarker in Acute Ischemic Stroke. Front. Cardiovasc. Med. 2021;8:798765. DOI: 10.3389/fcvm.2021.798765

33. Azab S.M. et al. Serum metabolic signatures of chronic limb-threatening ischemia in patients with peripheral artery disease. JCM. 2020;9(6):1877. DOI: 10.3390/jcm9061877

34. Liu Y. et al. Phenylacetylglutamine is associated with the degree of coronary atherosclerotic severity assessed by coronary computed tomographic angiography in patients with suspected coronary artery disease. Atherosclerosis. 2021;333:75–82. DOI: 10.1016/j.atherosclerosis.2021.08.029

35. Fu Y. et al. Prognostic value of plasma phenylalanine and gut microbiota-derived metabolite phenylacetylglutamine in coronary in-stent restenosis. Y. Fu et al. Front. Cardiovasc. Med. 2022;9:944155. DOI: 10.3389/fcvm.2022.944155

36. Fang C. et al. Dysbiosis of gut microbiota and metabolite phenylacetylglutamine in coronary artery disease patients with stent stenosis. Front. Cardiovasc. Med. 2022;9:832092. DOI: 10.1111/jcmm.15959

37. Li J. et al. Shifts in gut microbiome and metabolome are associated with risk of recurrent atrial fibrillation. J. Cellular. Molecular. Medi. 2020;24(22):13356–13369. DOI: 10.3389/fcvm.2022.832092

38. Zuo K. et al. Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. GigaScience. 2019;8(6):giz058. DOI: 10.1093/gigascience/giz058

39. Fujimoto D. et al. The relationship between unique gut microbiome-derived lipid metabolites and subsequent revascularization in patients who underwent percutaneous coronary intervention. Atherosclerosis. 2023;375:1–8. DOI: 10.1016/j.atherosclerosis.2023.05.001

40. Wang Y. et al. Gut microbiota in patients with postoperative atrial fibrillation undergoing off-pump coronary bypass graft surgery. J. Clin. Med. 2023;12(4):1493. DOI: 10.3390/jcm12041493

41. Liu Y. et al. Gut microbiota metabolism disturbance is associated with postoperative atrial fibrillation after coronary artery bypass grafting. J. Cardiovasc. Health. 2024;1(1):5. DOI: 10.1038/s44325-024-00003-z


Рецензия

Для цитирования:


Классова А.Т., Агранович Н.В., Анопченко А.С., Агранович А.О. Влияние микробиоты кишечника на развитие и течение заболеваний у пациентов с хронической болезнью почек в сочетании с сердечно-сосудистой патологией. Клиническая медицина. 2025;103(8-9):589-595. https://doi.org/10.30629/0023-2149-2025-103-8-9-589-595

For citation:


Klassova A.T., Agranovich N.V., Anopchenko A.S., Agranovich A.O. Influence of intestinal microbiota on the development and course of diseases in patients with chronic kidney disease in combination with cardiovascular pathology. Clinical Medicine (Russian Journal). 2025;103(8-9):589-595. (In Russ.) https://doi.org/10.30629/0023-2149-2025-103-8-9-589-595

Просмотров: 38

JATS XML

ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)