

Unstable atherosclerotic plaques: from pathogenesis to diagnosis
https://doi.org/10.30629/0023-2149-2024-102-11-12-793-799
Abstract
Recent scientific advancements have significantly improved the understanding of the molecular mechanisms underlying the pathogenesis of atherosclerosis. However, there remains a need to systematize this data. Numerous factors act as inducers of the inflammatory process in atherosclerosis, including endothelial aging, metabolic dysfunctions, autoimmune factors, and, in some cases, infectious damage. In the clinical picture of atherosclerosis, it is crucial to timely diagnose signs of destabilization of atherosclerotic plaques, as unstable plaques are prone to rupture, which can lead to life-threatening complications (such as stroke, myocardial infarction, etc.). Therefore, the search for and identification of molecular markers and instrumental methods reflecting the processes associated with plaque destabilization are particularly relevant for patients with asymptomatic disease progression.
About the Authors
A. V. DemyanenkoRussian Federation
Alexey V. Demyanenko — Doctor of Medical Sciences, Deputy Head for Medical Affairs
Moscow
N. A. Varavin
Russian Federation
Nikita A. Varavin — cardiologist at the 1st Department of Advanced Medical Therapy
St. Petersburg
A. A. Santakov
Russian Federation
Alexander A. Santakov — student
St. Petersburg
P. V. Surzhikov
Russian Federation
Pavel V. Surzhikov — Candidate of Medical Sciences, Senior Lecturer at the 1st Department of Advanced Medical Therapy
St. Petersburg
References
1. Petkovic A., Erceg S., Munjas J., Ninic A., Vladimirov S., Davidovic A., Vukmirovic L., Milanov M., Cvijanovic D., Mitic T., Sopic M. LncRNAs as Regulators of Atherosclerotic Plaque Stability. Cells. Multidisciplinary Digital Publishing Institute (MDPI), 2023;12(14):1832. DOI: 10.3390/cells12141832
2. Konstantinova E.V., Sagatelyan A.A., Bogdanova A.A., Pershina E.S., Shemenkova V.S., Svet A.V., Oganesyan A.A., Gilyarov M. Yu. Comparative assessment of the signs of instability of atherosclerotic plaques in the carotid arteries in elderly patients with acute coronary syndrome with duplex scanning and computed tomography-angiography. Cardiovascular Therapy and Prevention. 2022;21(9):3275. (In Russian). DOI: 10.15829/1728-8800-2022-3275
3. Zaitsev DE, Trufanov GE. Possibilities of Ultrasound Dopplerography in Detecting Instability of Atherosclerotic Plaque of Carotid Arteries. Translational Medicine. 2019; 6(3):36–43. (In Russian).
4. Pogorelova O.A., Tripoten M.I., Guchaeva D.A., Shahnovich R.M., Ruda M.Ya., Ba la khonova T.V. Carotid plaque instability in patients with acute coronary syndrome as assessed by ultrasound duplex scanning. Kardiologiia. 2017;57(12):5–15. (In Russian).
5. To do rov S.S., Deribas V.Yu., Sidorov R.V., Kazmin A.S., Todorov S.S. Morphological features of the structure of unstable atherosclerotic plaques of the coronary arteries of the heart. Modern problems of science and education. 2021;4:92. (In Russian). DOI: 10.17513/spno.31054
6. Rzaeva K.A., Utegenov R.B., Shokova Z.K., Gazizov R.A., Abbasov D.I., Kuropiy T.S., Baranov A.A., Badoyan A.G., Khelimsky D.A., Krestyaninov O.V., Cher nyav sky A.M. Possibilities of lifetime methods of intravascular imaging of unstable atherosclerotic plaque as the main substrate of acute coronary syndrome. Endovascular surgery. 2021;8(1):7–19. (In Russian). DOI: 10.24183/2409-4080-2021-8-1-7-19
7. Libby P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovascular Research. Oxford University Press, 2021;117(13):2525–2536. DOI: 10.1093/cvr/cvab303
8. Sergienko I.V., Ansheles A.A. Pathogenesis, diagnosis and treatment of atherosclerosis: practical aspects. Russian Cardiology Bulletin. 2021;16(1):6472. (In Russian). DOI: 10.17116/Cardiobulletin20211601164
9. Pavlova D.N., Efimova N.Yu., Ryzhkova D.V. Radionuclide diagnostics of unstable atherosclerotic plaques. Siberian Medical Journal. 2014;1:17–24. (In Russian). [Ele ctronic resource]. URL: https://cyberleninka.ru/article/n/radionuklidnaya-diagnostika-nestabilnyhateroskleroticheskih-blyashek (data access: 31.01.2024).
10. Tsyplenkova, V.G. Ultrastructural study of stable and unstable atherosclerotic plaques. International Journal of Applied and Fundamental Research. 2012;7:127–128. (In Russian).
11. Aguilar-Ballester M., Herrero-Cervera A., Vinué Á., Martínez-Hervás S., González-Navarro H. Impact of cholesterol metabolism in immune cell function and atherosclerosis. Nutrients. MDPI AG, 2020;12(7):1–19. DOI: 10.3390/nu12072021
12. Moriya J. Critical roles of inflammation in atherosclerosis. J. Cardiol. 2019;73(1):22–27. DOI: 10.1016/j.jjcc.2018.05.010
13. Eshghjoo S., Kim D.M., Jayaraman A., Sun Y., Alaniz R.C. Macrophage Polarization in Atherosclerosis. Genes. 2022;13(5):756. DOI: 10.3390/genes13050756
14. Baidžajevas K., Hadadi É., Lee B., Lum J., Shihui F., Sudbery I., Kiss-Tóth E., Wong S.C., Wilson H.L. Macrophage polarisation asso ciated with atherosclerosis differentially affects their capacity to handle lipids. Atherosclerosis. 2020;305:10–18. DOI: 10.1016/j.atherosclerosis.2020.05.003
15. Yarmolinskaya M.I., Molotkov A.S., Denisova V.M. Matrix metalloproteinases and inhibitors: classification, mechanism of action. Journal of Obstetrics and Women’s Diseases. 2012;61(1):113–125. In Russian).
16. Drapkina O.M., Gegenava B.B. Matrix metalloproteinases in cardiological practice. Journal of Heart Failure. 2014;15(6):397–404 (In Russian).
17. Govorin A.V., Ratsina E.V., Sokolova N.A., Fetisova N.V. Indicators of matrix metalloproteinase-9 and tissue metalloproteinase inhibitor-1 in acute transmural myocardial infarction complicated by aneurysm. Russian Journal of Cardiology. 2014; 19(7):87–90. (In Russian). DOI 10.15829/1560-4071-2014-7-87-90
18. Drapkina O.M., Gegenava B.B. Myocardial fibrosis in patients with diabetes mellitus. Rational pharmacotherapy in cardiology. 2013;9(1):62–65. (In Russian). DOI 10.20996/1819-6446-2013-9-1-62-65
19. Ivanoshchuk D.E., Ragino Yu. I., Shakhtschneider E.V., Mikhailova S.V., Fishman V. S., Polonskaya Ya.V., Kashtanova E.V., Chernyavsky A.M., Murashov I.S., Voevoda M.I.1 Analysis of differential expression of matrix metalloproteinases in stable and unstable atherosclerotic plaques by full-genome RNA sequencing: a pilot study. Russian Journal of Cardiology. 2018;23(8):52–58. (In Russian). DOI 10.15829/1560-4071-2018-8-52-58
20. Ridker P.M. From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream to Identify Novel Targets for Atheroprotection. Circ. Res. 2016;8(118):145–156. DOI: 10.1161/CIRCRESAHA.115.306656
21. Murray P.J. Allen J.E., Biswas S.K., Fisher E.A., Gilroy D.W., Goerdt S., Gordon S., Hamilton J.A., Ivashkiv L.B. Lawrence T., Locati M., Mantovani A. Martinez F.O., Mege J.L., Mosser D.M., Natoli G., Saeij J.P., Schultze J.L., Shirey K.A., Sica A., Suttles J., Udalova I., van Ginderachter J.A., Vogel S.N., Wynn T.A.. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity. Cell Press. 2014;41(1):14–20. DOI: 10.1016/j.immuni.2014.06.008
22. Van Tassell B.W., Toldo S., Mezzaroma E., Abbate A. Targeting interleukin-1 in heart disease. Circulation. 2013;128(17):1910–1923. DOI:10.1161/CIRCULATIONAHA.113.003199
23. Taleb S., Tedgui A., Mallat Z. Interleukin-17: friend or foe in atherosclerosis? Curr. Opin. Lipidol. 2010;21(5): 404–408. DOI: 10.1097/MOL.0b013e32833dc7f9
24. Pigarevsky P.V., Snegova V.A., Maltseva S.V., Davydova N.G. Comparative immunohistochemical and morphometric study of interleukin-17 in various atherosclerotic lesions in humans. Medical Academic Journal. 2019;19(4):109–113. (In Russian). DOI: 10.17816/MAJ19089
25. Xiao X., Yang C., Qu S.L., Shao Y.D., Zhou C.Y., Chao R., Huang L., Zhang C. S100 proteins in atherosclerosis. Clin. Chim. Acta. 2020;502:293–304. DOI: 10.1016/j.cca.2019.11.019
26. Zhou Y., Zha Y., Yang Y., Ma T., Li H., Liang J. S100 proteins in cardiovascular diseases. Mol. Med. 2023;29(1):68. DOI: 10.1186/s10020-023-00662-1
27. Buyukterzi Z., Can U., Alpaydin S., Guzelant A., Karaarslan S., Kocyigit D., Gurses K.M..Enhanced S100A9 and S100A12 expression in acute coronary syndrome. Biomark Med. 2017;11(3): 229–237. DOI: 10.2217/bmm-2016-0253
28. Pigarevsky P.V., Maltseva S.V., Snegova V.A., Davydova N.G., Yakovleva O.G. Protein S100A8 in atherosclerotic lesions in humans. The wedge. exp. morphology. 2022;11(1):43–49. (In Russian). DOI: 10.31088/CEM2022.11.1.43-49
29. Stakhneva E.M., Kashtanova E.V., Polonskaya Ya.V., Stryukova E.V., Shramko V.S., Sadovsky E.V., Kurguzov A.V., Murashov I.S., Chernyavsky A.M., Ragino Yu.I.. To study the associations of proteins in the blood with the presence of unstable atherosclerotic plaques in the coronary arteries by quantitative proteomics. Bulletin of Siberian medicine. 2022;21(4):121–129. (In Russian). DOI 10.20538/1682-0363-2022-4-121-129
30. Maehara A., Cristea E., Mintz G.S., Lansky A.J., Dressler O., Biro S., Templin B., Virmani R., de Bruyne B., Serruys P.W., Stone G.W. Definitions and Methodology for the Grayscale and Radiofrequency Intravascular Ultrasound and Coronary Angiographic Analyses. JACC Cardiovasc. Imaging. 2012;5(3):1–9. DOI: 10.1016/j.jcmg.2011.11.019
31. Zakharov A.S., Michurova M.S., Terekhin S.A. Kalashnikov V.Yu., Smirnova O.M., Shestakova M.V., Dedov I.I. The use of intravascular ultrasound with “virtual histology” in assessing the structure of atherosclerotic plaque in patients with coronary heart disease and type 2 diabetes mellitus. Therapeutic Archive. 2019;91(12):41–46. (In Russian). DOI: 10.26442/00403660.2019.12.000367
32. Tagieva N.R., Shakhnovich R.M., Mironov V.M., Yezhov M.V., Matchin Yu.G., Mitroshkin M.G., Safarova M.S., Shitov V.N., Ore M.Ya. The prognostic value of the characteristics of atherosclerotic plaques in the coronary arteries in patients with acute myocardial infarction and chronic ischemic heart disease according to intravascular ultrasound examination. Atherosclerosis and dyslipidemia. 2015;4(21):20–29. (In Russian).
33. Kochergin N.A., Kochergina A.M., Khorlampenko A.A., Ganyukov V.I., Shilov A.A., Barbarash O.L. Vulnerable atherosclerotic plaques of coronary arteries in patients with stable coronary artery disease: 12-months follow-up. Kardiologiia. 2020;60(2):69–74. (In Russian).
34. Gladkova N.D., Gubarkova E.V., Sharabrin E.G., Stelmashok V.I., Beymanov A.E. Pos sibilities and limitations of intravascular optical coherence tomography. Modern technologies in medicine. 2012;4:128–141. (In Russian).
35. Shimamura K., Kubo T., Akasaka T. Evaluation of coronary plaques and atherosclerosis using optical coherence tomography. Expert Rev. Cardiovasc. Ther. 2021;19(5): 379–386. DOI: 10.1080/14779072.2021.1914588
36. Koganti S., Karanasos A., Regar E., Rakhit R.D. Association of systemic inflammatory biomarkers with morphological characteristics of coronary atherosclerotic plaque by intravascular optical coherence tomography. Hellenic J. Cardiol. 2021;62(2):101– 106. DOI: 10.1016/j.hjc.2020.06.008
37. Gomes P.M., Almeida B.O., Marinelli Pedrini S., Freitas B.P., Júnior J.M., Lemos P.A., Fonseca F.H., Mintz G.S., Caixeta A. Morphology and phenotype characteristics of atherosclerotic plaque in patients with acute coronary syndrome: contemporary optical coherence tomography findings. Coron. Artery Dis. 2021;32(8): 698–705. DOI: 10.1097/MCA.0000000000001027
38. Belov Yu.V., Sinyavin G.V., Barinov E.V., Grabuzdov A.M. Contrast-enhanced ultrasonography as the most perspective diagnostic method for unstable atherosclerotic plaque of carotid artery. Khirurgiya. Zhurnal imeni N.I. Pirogova. 2018;9:51–55. (In Russian). DOI: 10.17116/hirurgia201809152
39. Brinjikji W., Huston J., Rabinstein A.A., Kim G.M., Lerman A. Lanzino G. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability. J. Neurosurg. 2016;124(1): 27–42. DOI: 10.3171/2015.1.JNS142452
40. Saba L., Cau R., Murgia A., Nicolaides A.N., Wintermark M., Castillo M., Staub D., Kakkos S.K., Yang Q., Paraskevas K.I., Yuan C., Edjlali M., Sanfilippo R., Hendrikse J., Johansson E., Mossa-Basha M., Balu N., Dichgans M., Saloner D., Bos D., Jager H.R., Naylor R., Faa G., Suri J.S., Costello J., Auer D.P., Mcnally J.S. Bonati L.H., Nardi V., van der Lugt A., Griffi n M., Wasserman B.A., Kooi M.E., Gillard J., Lanzino G., Mikhailidis D.P., Mandell D.M., Benson J.C., van Dam-Nolen D.H.K., Kopczak A., Song J.W., Gupta A., DeMarco J.K., Chaturvedi S., Virmani R., Hats ukami T.S., Brown M., Moody A.R., Libby P., Schindler A., Saam T. Carotid Plaque-RADS: A Novel Stroke Risk Classification System. JACC Cardiovasc. Imaging. 2024;17(1): 62–75. DOI: 10.1016/j.jcmg.2023.09.005
41. Saba L., Scicolone R., Johansson E., Nardi V., Lanzino G., Kakkos S.K., Pontone G., Annoni A.D., Paraskevas K.I., Fox A.J. Quantifying Carotid Stenosis: History, Current Applications, Limitations, and Potential: How Imaging Is Changing the Scenario. Life. 2024;14:73. DOI: 10.3390/life1401007
42. Saba L., Loewe C., Weikert T., Williams M.C., Galea N., Budde R.P.J., Vliegenthart R., Velthuis B.K., Francone M., Bremerich, J. et al. Stateof-the-Art CT and MR Imaging and Assessment of Atherosclerotic Carotid Artery Disease: The Reporting — A Consensus Document by the European Society of Cardiovascular Radiology (ESCR). Eur. Radiol. 2022;33(1):1088–1101.
Review
For citations:
Demyanenko A.V., Varavin N.A., Santakov A.A., Surzhikov P.V. Unstable atherosclerotic plaques: from pathogenesis to diagnosis. Clinical Medicine (Russian Journal). 2024;102(11-12):793-799. (In Russ.) https://doi.org/10.30629/0023-2149-2024-102-11-12-793-799