

Use of chitosan of various origins in medicine
https://doi.org/10.30629/0023-2149-2024-102-8-602-609
Abstract
Chitosan is widely used in all areas of human activity. It is obtained from animals, insects, and plants containing chitin through chemical purification. Animal-derived raw materials are most in demand, while insect-derived sources are the most promising. Main Provisions. Chitosan is extensively used in medicine: in nutrition, surgery, hematology, dentistry, and oncology. It exhibits biocompatibility, bioresorbability, non-toxicity, hemostatic properties, plasticity, adhesive qualities, and has antibacterial properties. By altering the chemical formula of chitosan, its molecular weight and charge, and combining it with various substances, new application areas and more economical extraction methods can be found. Detoxifying, sorptive, and hypolipidemic properties are sought after in nutrition and gastroenterology. The effects of chitosan on various phases of regeneration, as well as its anticoagulant properties, are utilized in surgery. Chitosan’s osteoinductive efects are applied in dentistry and traumatology, while its hemostatic, antibacterial, antitumor, and radioprotective properties are key research directions in emergency surgery and oncology, respectively. Conclusion. The widespread application of chitosan in all areas of human activity, especially in medicine, makes it a sought-after and promising substance. To expand the production of various chitosan-based substances, it is essential to find new, cheaper methods for extracting chitosan from chitin, streamline the routes from raw materials to final products, and develop independent Russian equivalents of chitosan drug forms.
About the Authors
L. A. KoptevaRussian Federation
Lyubov A. Kopteva — resident oncologist
Tula
E. G. Obiedkov
Russian Federation
Evgeny G. Obiedkov — Candidate of Medical Sciences, Assistant of the Department of Surgical Diseases No. 1
Kursk
E. S. Mishina
Russian Federation
Ekaterina S. Mishina — Candidate of Medical Sciences, Head of the Laboratory of Morphology and Cell Technologies of the Research Institute of Experimental Medicine, Associate Professor of the Department of Histology, Embryology, Cytology
Kursk
I. S. Ivanov
Russian Federation
Ilya S. Ivanov — Doctor of Medical Sciences, Professor, Head of the Department of Surgical Diseases No. 1
Kursk
A. K. Terentyev
Russian Federation
Andrey K. Terentyev — dentist-surgeon , medical and preventive department No. 7
Tula
N. Yu. Obiedkova
Russian Federation
Natalia Y. Obiedkova — Assistant of the Department of Polyclinic Therapy and General Medical Practice
Kursk
References
1. Petrovich Yu.A., Grigor’yants L.A., Gurin A.N., Gurin N.A. Chitosan: structure and properties. Use in medicine. Stomatologiya. 2008;87(4):72–78. (In Russian)].
2. Bykova V., Nemtsov V.S. Raw sources and methods of obtaining chitin and chitosan. Chitin and chitosan. Receipt, properties and application. Edited by K.G. Scriabin, G.A. Vikhreva, V.P. Varlamov. Moscow. Publishing house «Nauka». 2006;7–23. (In Russian)].
3. RodwellMurray R.K., Granner D.K., Mayes P.A., Victor W. Harper’s Biochemistry 25th ed. Stamford, 2000;927.
4. Grishin A.A., Zorina N.V., Lutsky V.I. Chitin and chitozan: chemistry, biological activity, application. University Bulletin. Applied Chemistry and Biotechnology. Irkutsk. 2014;7(1):29–34.
5. Mukatova M.D., Kirichko N.A., Romanenkova E.N. Qualitative characteristics of chitin and chitosan obtained from the shell of waste containing crayfi sh waste. Vestnik MGTU. Murmansk, 2015;18(4):641–646.
6. Kargin V.S., Pyatigorskaya N.V., Brkich G.E. Various properties of chitosan and the possibility of its use in the medical fi eld. Interuniversity Scientifi c Congress “Higher School: Scientifi c Research”. Moscow. 2020:72–78.
7. Horst M.N., Walker A.N., Klar E. The pathway of crustacean chitin synthesis, the Crustacean Integument: Morphology and Biochemistry. Eds. Horst M.N., Free man J.A. CRC: Boca Raton, USA. 1993:113–149.
8. Nemtsev S.V. Complex technology of chitin and chitosan from the shell of crustaceans. Moscow: VNIRO, 2006;134. (In Russian)].
9. Nemtsev S.V., Zuyeva O.Yu., Khismatullin M.R., Albulov A.I., Varlamov V.P. Prikladnaya biokhimiya i mikrobiologiya. 2006; 40:46‒50. (In Russian)].
10. Tereshina, V.M., Memorskaya, A.S., Feofi lova, E.P., Nemtsev, D.V., Kozlov, V.M. Isolation of polysaccharide complexes from mycelial fungi and determination of their deacetylation degree. Microbiology. 1997;66:84‒89.
11. Ruiz Herrera J., Gonzalez Prieto J.M., Ruiz Medrano R. Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi. FEMS Yeast Research. 2002;1:247–256. DOI: 10.1111/j.1567-1364.2002.tb00042.x
12. Tsigos I., Nathalie Z., Aggeliki M., Alain D., Bouriotis V. Mode of action of chitin deacetylase from Mucor rouxii on N acetylchitooligosaccharides. European Journal of Biochemistry. 1999;261:1–9. DOI: 10.1046/j.1432-1327.1999.00311.x
13. Feofilova Ye.P. The key role of chitin in the formation of the cell wall of fungi. Chitin and chitosan. obtaining, properties and application. Skryabin K.G., Vikhoreva G.A., Varlamov V.P., editors. Moscow. Nauka. 2002;79–99. (In Russian)]
14. Feofilova Ye.P. Chitin of fungi: distribution, biosynthesis, physico-chemical properties and prospects of use. Chitin and chitosan. Obtaining, properties and application. Skryabin K.G., Vikhoreva G.A., Varlamov V.P., editors. Moscow. Nauka, 2002;100– 111. (In Russian)].
15. Mysyakina I.S., Bokareva D.A., Usov A.I., Feofi lova E.P. Diff erences in the carbohydrate composition between the yeastlike and mycelial cells of Mucor hiemalis. Microbiology. 2012;81:405‒408. DOI: 10.1134/S0026261712040133
16. Karimi K., Zamani A. Mucor indicus: biology and industrial application perspectives: a review. Biotechnology Advances. 2013;31:466– 481. DOI: 10.1016/j.biotechadv.2013.01.009
17. Varlamov V.P. Chitin/chitosan and its derivatives: fundamental and applied aspects. V.P. Varlamova, A.V. Il’ina, B.TS. Shagdarova, editors. Advances in biological chemistry. Moscow. 2020;60:317–368. (In Russian)]/
18. Osovskaya I.I. Additional chapters of polymer materials technology. Physico-chemical properties of chitin, chitosan and fi bers based on them: study manual. Osovskaya I.I., editors. Saint-Petersburg. VSHT·E SPBGUPTD. 2021:80. ISBN 987-5-91646-263-0 (In Russian)].
19. Soldatova S.Y. Development of technology for obtaining chitosan from shell-containing raw materials. Vestnik Nizhnevartovskogo gosudarstvennogo universiteta. 2015;1:48–56. (In Russian)].
20. Bykov V.P., Snytkin I.I., Bykova V.M., Krivosheina L.I., Nedosekova T.M., Novikov A.V., Panov K.N., Furman D.I. All-Russian Scientifi c Research Institute of Fisheries and Oceanography, assignees. Russian Federation patent RU 2116733. 1998 Jul 10. (In Russian)].
21. Fedosov P.A. Chitosan as a polymer of the future and prospects of its application in medicine. “Electronic scientifi c journal «Аpriori». Series: Natural and technical sciences”. Voronezh. 2014;4:1–7 (In Russian)]. [Electronic resource]. URL: https://cyberleninka.ru/article/n/hitozan-kak-polimer-buduschegoi-perspektivy-ego-primeneniya-v-meditsine/viewer (accessed 17.10.2023).
22. Kozyreva YE.V., Abramov A.Yu., Shipovskaya A.B. Features of physico-chemical properties of chitosan solution. News of Saratov University. A new series. Series: Chemistry. Biology. Ecology. 2011;11(2):25–31 (In Russian)].
23. Nikitenko P., Khrustitskaya L. Chitosan — polymer of the future. Nauka i innovatsiya. 2013;9(127):14–17 (In Russian)].
24. Slivkin D., Lapenko V.L., Safonova O.A., Suslina S.N., Belenova A.S. Chitosan for pharmacy and medicine. Bulletin of the Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2011;2:214–232 (In Russian)].
25. Albulov A.I., Frolova M.A., Buhantsev A.V., Bykova V.M., Nemtsev S.V. Chitosan-containing biologically active food additives in rationalizing the nutrition of the population. Rybprom: technologies and equipment for processing aquatic biological resources. 2010;2:25–28 (In Russian)].
26. Gladyshev D.YU. Structure and fractional composition of chitosan carboxymethyl ether. Vysokomolekulyarn·yye soyedineniya. 1990;32В(7):503–505 (In Russian)].
27. Kamskaya V.E. Chitosan: structure, properties and use // Nauchnoye obozreniye. Biologicheskiye nauki. 2016;6:36–42. (In Russian)]. [Ele ctronic resource]. URL: https://science-biology.ru/ru/article/view?id=1020 (accessed: 11.10.2023).
28. Bol’shakov I.N., Nasibov S.M., Kuklin E.Yu. The use of chitosan and its pro ducts in infl ammatory diseases of the gastrointestinal tract. Chitin and chitosan. Receipt, properties and application. Edited by K.G. Scriabin, G.A. Vikhreva, V.P. Varlamov. Moscow: Publishing House «Nauka». 2006:7–23 (In Russian)].
29. Tarsi R., Muzzarelli R., Guzman C., Pruzzo C. Inhibition of Streptococus mutans. Adsorption of hydroxyapatite by low-molecular weight chitosans. J. Dent. Research. 1997;76(2):665–672. DOI: 10.1177/00220345970760020701
30. Аbilova G., Makhayeva, D., Irmukhametova, G., Khutoryanskiy, V. Chitosan based hydrogels and their use in medicine. Chemical Bulletin of Kazakh National University. 2020;97(2):16–28. DOI: 10.15328/cb1100
31. Tyliszczak B., Drabczyk A., Kudłacik-Kramarczyk S., Bia likWąs K., Kijkowska R., Sobczak-Kupiec A. Preparation and cytotoxicity of chitosan-based hydrogels modifi ed with silver nanoparticles. Colloids and Surfaces B: Biointerfaces. 2017;160:325–330. DOI: 10.1016/j.colsurfb.2017.09.044
32. Deepachitra R., Pujitha Lakshmi R., Sivaranjani K., Helan Chandra J., Sastry T.P. Nanoparticles embedded biomaterials in wound treatment: A review. Journal of Chemical and Pharmaceutical Sciences. 2015;8(2):324–329.
33. Gorshenin D.S., Zhernov Yu.V., Krivtsov G.G., Khaitov M.R. The use of chitosan and its derivatives in immunotherapy of malignant neoplasms. Immunologiya. 2020;41(5): 470-478. (In Russian)]. DOI: 10.33029/0206-4952-2020-41-5-470-478
34. Sun B., Yu S., Zhao D., Guo S., Wang X., Zhao K. Polysaccharides as vaccine adjuvants. Vaccine. 2018;36(35):5226–34. DOI: 10.1016/j.vaccine.2018.07.040
35. Vasconcelos D.P., de Torre-Minguela C., Gomez A.I. 3D chitosan scaff olds impair NLRP3 infl ammasome response in macrophages. Acta Biomater. 2019;91:123–34. DOI: 10.1016/j.actbio.2019.04.035
36. Fong D., Gregoire-Gelinas P., Cheng A.P. Lysosomal rupture induced by structurally distinct chitosans either promotes a type 1 IFN response or activates the infl ammasome in macrophages. Biomaterials. 2017;129:127–38. DOI: 10.1016/j.biomaterials.2017.03.022
37. Pogorielov M. V., Sikora V.Z. Chitosan as a Hemostatic Agent: Current State. European Journal of Medicine. Series B. 2015;1(2):24– 33. DOI: 10.13187/ejm.s.b.2015.2.24
38. Huang Y., Feng L., Zhang Y., He L., Wang C., Xu J., Wu J., Kirk T.B., Guo R., Xue W. Hemostasis mechanism and applications of N-alkylated chitosan sponge. Polymers for Advanced Technologies. 2017;9(28):1107–1114. DOI: 10.3390/md16080273
39. Budko Ye.V., Chernikova D.A., Yampol’skiy L.M., Yatsyuk V.YA. Local hemostatic agents and ways to improve them. Rossiyskiy medikobiologicheskiy vestnik imeni akademika I.P. Pavlova. 2019;27(2):274-285 (In Russian)]. DOI: 10.23888/PAVLOVJ2019272274-285
40. Fes’kov A.E., Sokolov A.S., Soloshenko S.V. A new hemostatic bandage based on the natural biopolymer chitosan. Kharkiv Medical Academy of Postgraduate Education. Meditsina neotlozhnykh sostoyaniy. 2017;2(81):95–98 (In Russian)].
41. Lyapina L.A., Grigoryeva M.E., Lyapin G.Yu., Obergan T.Yu., Shubina T.A. Aggregation eff ects of chitosan in the blood. Norwegian Journal of development of the International Science. 2021;61:13–16 (In Russian)].
42. Lipatov V.A., Bordunova M.A., Panov A.A., Denisov A.A. On the issue of classifi cation of local hemostatic agents. Innova. 2022;4(29):38–41 (In Russian)].
43. Sudheesh Kumar P.T., Lakshmanan V.K., Anilkumar T.V., Ramya C., Reshmi P. Flexible and microporous chitosan hydrogel/ nano ZnO composite bandages for wound dressing: In vitro and in vivo evaluation. ACS Applied Materials and Interfaces. 2012;4(5):2618–2629. DOI: 10.1021/am300292v
44. Hu Z., Zhang D.-Y., Lu S.-T., Li P.-W., Li S.-D. Chitosan-Based Composite Materials for Prospective Hemostatic Applications. Marine Drugs. 2018;8(16):273. DOI: 10.3390/md16080273
45. Kumar S.M.P. Local hemostatic agents in the management of bleeding in oral surgery. Asian Journal Pharmaceutical and Medical Research. 2016;9 (3):35–41.
46. Budko E.V., Chernikova D.A., Yampolsky L.M., Yatsyuk V.Ya. Local hemostatic agents and ways of their improvement. Rossiyskiy mediko-biologicheskiy vestnik imeni akademika I.P. Pavlova. 2019;27(2): 274– 285. (In Russian)]. DOI: 10.23888/PAVLOVJ2019272274-285
47. Li Q., Lu F., Zhou G., Yu K., Lu B., Xiao Y., Dai F., Wu D., Lan G. Silver Inlaid with Gold Nanoparticle/Chitosan Wound Dressing Enhances Antibacterial Activity and Porosity, and Promotes Wound Healing. Biomacromolecules. 2017;11(18):3766–3775. DOI: 10.1021/acs.biomac.7b01180
48. Fan L., Yang H., Yang J., Peng M., Hu J. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydrate Polymers. 2016;146:427–434. DOI: 10.1016/j.carbpol.2016.03.002
49. Hu Z., Zhang D.-Y., Lu S.-T., Li P.-W., Li S.-D. Chitosan-Based Composite Materials for Prospective Hemostatic Applications. Marine Drugs. 2018;8(16):273. DOI: 10.3390/md16080273
50. Siemer S., Lahme S., Altziebler S., Machtens S., Strohmaier W., Wechsel H.-W., Goebell P., Schmeller N., Oberneder R., Stolzenburg J.-U., Becker H., Lüftenegger W., Tetens V., Poppel H. Effi cacy and Safety of TachoSil® as Haemostatic Treatment versus Standard Suturing in Kidney Tumour Resection: A Randomised Prospective Study. European Urology. 2007;4(52):1156–1163. DOI: 10.1016/j.eururo.2007.04.027
51. Zhang J., Xue S., Zhu X., Zhao Y., Chen Y., Tong J., Shi X., Du Y., Zhong Z., Ye Q. Emerging chitin nanogels/rectorite nanocomposites for safe and eff ective hemorrhage control. Journal of Materials Chemistry B. 2019;33(7):5096–5103. DOI: 10.1039/c9tb01019j
52. Sun X., Tang Z., Pan M., Wang Z., Yang H., Liu H. Chitosan/kaolin composite porous microspheres with high hemostatic effi cacy. Carbohydrate Polymers. 2017;177:135–143. DOI: 10.1016/j.carbpol.2017.08.131
53. Gudmund Skjå k-Braek, Thorleif Anthonsen, Paul Sandford. Chitin and chitosan. Sources, chemistry, biochemistry, physical properties and applications. London, New York, 1989:835.
54. Xi Lu., Prudhommeaux F., Meunier A., Sedel L., Guillemin G. Eff ect of chitosan on rat knee cartilages. Biomaterials. 1999;20:1937–1944. DOI: 10.1016/s0142-9612(99)00097-6
55. Suh I.K.F., Matthew H. Application of chitosan- based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21:2589–2598. DOI: 10.1016/s0142-9612(00)00126-5
56. Anisha B.S., Biswas R., Chennazhi K.P., Jayakumar R. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. International Journal of Biological Macromolecules. 2013;62:310–320. DOI: 10.1016/j.ijbiomac.2013.09.011
57. Ishihara M., Ono K., Sato M., Nakanishi K., Saito Y., Yura H., Matsui T., Hattori H., Fujita M., Kikuchi M., Kurita A. Acceleration of wound contraction and healing with a photocrosslinkable chitosan hydrogel. Wound Repair and Regeneration. 2001;9(6):513–521. DOI: 10.1046/j.1524-475x.2001.00513.x
58. Obara K., Ishihara M., Ishizuka T., Fujita M., Ozeki Y., Maehara T., Saito Y., Yura H., Matsui T., Hattori H., Kikuchi M., Kurita A. Photocrosslinkable chitosan hydrogel containing fi broblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials. 2003;24(20):3437–3444. DOI: 10.1016/s0142-9612(03)00220-5
59. Caló E., Barros J.M.S.D., Fernández-Gutiérrez M., San Román J., Ballamy L., Khutoryanskiy V. V. Antimicrobial hydrogels based on autoclaved poly (vinyl alcohol) and poly (methyl vinyl ether-alt-maleic anhydride) mixtures for wound care applications. RSC Advances. 2016;6(60):55211–55219. DOI: 10.1039/C6RA08234C
60. Yakhkind M.I., Tarantseva K.R. Nanosystems for drug delivery from the nose to the brain. Izvestiya PGPU im. V.G. Belinskogo. 2012;29:293–300 (In Russian)].
61. Muzzarelli R., Biagini G., Pugnaloni A., Filippini O., Baldassarre V., Castaldini С., Rizzoli С. Reconstruction of paradontal tissue with chitosan. Biomaterials. 1989;10(11):598–603. DOI: 10.1016/0142-9612(89)90113-0
62. Kostesha N.Ya. Anti-radiation activity of chitosan preparations with plant extracts. N.Ya. Kostesha, editors. Biblioteka VNIRO. 2006:1–3. (In Russian)]. [Electronic resource]. URL: http://hdl.handle.net/123456789/2461
63. Bumgardner J.D., Wiser R., Elder S.H., Jouett R. Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. J. Biomater. Sci. Polym. Ed. 2003;14:1401–1409. DOI: 10.1163/156856203322599734
64. Bumgardner J.D., Wiser R., Gerard P.D., Bergin P., Chestnutt B., Marini M., Ramsey V., Elder St.H., Gilbert J.A. Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. J. Biomater. Sci. Polym Ed. 2003;14:423–438. DOI: 10.1163/156856203766652048
65. Wang J., de Boer J., de Groot K. Preparation and characterization of electrodeposited calcium phosphate/chitosan coating on Ti6Al4V plates. J. Dent. Res. 2004;83:296–301. DOI: 10.1177/154405910408300405
66. Wang X., Ma J., Wang Y., He B. Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements. Biomaterials. 2002;23:4167–4176. DOI: 10.1016/S0142-9612(02)00153-9
67. Muzzarelli R., Biagini G., Bellardini M., Simonelli L., Castaldini C. and Fratto G. Osteoconduction exerted by methylpyrrolidinone chitosan used in dental surgery. Biomaterials. 1993;14(1):39–43. DOI: 10.1016/0142-9612(93)90073-B
68. Cho B.C., Park J.W., Baik B.S., Kwon I.Ch., Kim I.S. The role of hyaluronic acid, chitosan, and calcium sulfate and their combined eff ect on early bony consolidation in distraction osteogenesis of a canine model. J. Craniofac. Surg. 2002;13:783–793. DOI: 10.1097/00001665-200211000-00014
69. Kim S.B., Kim Y.J., Yoon T.L., Park S.A. The characteristics of a hydroxyapatite-chitosan-PMMA bone cement. Biomaterials. 2004;25:5715–23. DOI: 10.1016/j.biomaterials.2004.01.022
70. Kawakami T., Antoh M., Hasegawa H., Yamagishi T., Ito M., Eda S. Experimental study on osteoconductive properties of a chitosan-bonded hydroxyapatite self-hardening paste. Biomaterials. 1992;13:759–763. DOI: 10.1016/0142-9612(92)90014-f
71. Xu H.H., Quinn J.B., Takagi S., Chow L.C. Synergistic reinforcement of in situ hardening calcium phosphate composite scaff old for bone tissue engineering. Biomaterials. 2004;25:1029–1037. DOI: 10.1016/s0142-9612(03)00608-2
72. Ito M. In vitro properties of a chitosan-bonded hydroxyapatite bone-fi lling paste. Biomaterials. 1991;12(1):41–45. DOI: 10.1016/0142-9612(91)90130-3
73. Murugan R., Ramakrishna R. Bioresorbable composite bone paste using polysaccharide based nanohydroxyapatite. Biomaterials. 2004;25:3829–3835. DOI: 10.1016/j.biomaterials.2003.10.016
74. Tarsi R., Muzzarelli R. Guzman C, Pruzzo C. Inhibition of Streptococus mutans. Adsorption of hydroxyapatite by low-molecular weight chitosans. J. Dent. Research. 1997;76(2):665–672. DOI: 10.1177/00220345970760020701
75. Anraku M., Fujii T., Furutani N., Kadowaki D., Maruyama T., Otagiri M., Gebicki J.M., Tomida H. Antioxidant eff ects of a dietary supplement: Reduction of indices of oxidative stress in normal subjects by water soluble chitosan. Food and Chemical Toxicology. 2009;47:104–109. DOI: 10.1016/j.fct.2008.10.015
76. Chang S.H., Wu C.H., Tsai G.J. Eff ects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydrate Polymers. 2018;181:1026–1032. DOI: 10.1016/j.carbpol.2017.11.047
77. Tomida H., Fujii T., Furutani N., Michihara A., Yasufuku T., Akasaki, K., Maruyama, T., Otagiri, M., Gebicki, J.M., Anraku, M. Antioxidant properties of some diff erent molecular weight chitosans. Carbohydrate Research. 2009;344:1690–1696. DOI: 10.1016/j.carres.2009.05.006
78. Zou P., Yang X., Wang J., Li Y., Yu H., Zhang Y., Liu G. Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chemistry. 2016;190:1174–1181. DOI: 10.1016/j.foodchem.2015.06.076
79. Xia W., Liu P., Zhang J., Chen J. Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids. 2011;25:170–179. DOI: 10.1016/j.foodhyd.2010.03.003
80. Liu H.T., Li W.M., Xu G., Li X.Y., Bai X.F., Wei P., Yu C., Du Y.G. Chitosan oligosaccharides attenuate hydrogen peroxideinduced stress injury in human umbilical vein endothelial cells. Pharmacologi cal Research. 2009;59:167–175. DOI: 10.1016/j.phrs.2008.12.001
81. Li K., Xing R., Liu S., Li R., Qin Y., Meng X., Li P. Separation of chito oligomers with several degrees of polymerization and study of their antioxidant activity. Carbohydrate Polymers. 2012;88:896– 903. DOI: 10.1016/j.carbpol.2012.01.033
82. Hu Q., Luo Y. Polyphenol chitosan conjugates: Synthesis, characterization, and applications. Carbohydrate Polymers. 2016;151:624– 639. DOI: 10.1016/j.carbpol.2016.05.109
83. Azuma K., Osaki T., Minami S., Okamoto Y. Anticancer and anti-infl ammatory properties of chitin and chitosan oligosaccharides. J. Funct. Biomater. 2015; 6(1):33–49. DOI: 10.3390/jfb6010033
84. Huang R., Mendis E., Rajapakse N., Kim S.-K. Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci. 2006;78(20):2399–2408. DOI: 10.1016/j.lfs.2005.09.039
85. Xu W., Jiang, C., Kong X., Liang Y., Rong M., Liu W. Chitooligosaccharides and N-acetyl-D-glucosamine stimulate peripheral blood mononuclear cell-mediated antitumor immune responses. Mol. Med. Rep. 2012;6(2):385–390. DOI: 10.3892/mmr.2012.918
86. Janes K.A., Fresneau M.P., Marazuela A. Chitosan nanoparticles as delivery systems for doxorubicin. J. Control Released. 2001;73(2– 3):255–267. DOI: 10.1016/s0168-3659(01)00294-2
87. Shanmugsundaram N., Ravichandran P., Reddy P.N., Ramamurty N., Pal S., Rao K.P. Collagen-chitosan polymeric scaff old for the in vitro culture of human epidermoid carcinoma cells. Biomaterials. 2001;2:1943–1951. DOI: 10.1016/s0142-9612(00)00220-9
88.
89.
Review
For citations:
Kopteva L.A., Obiedkov E.G., Mishina E.S., Ivanov I.S., Terentyev A.K., Obiedkova N.Yu. Use of chitosan of various origins in medicine. Clinical Medicine (Russian Journal). 2024;102(8):602-609. (In Russ.) https://doi.org/10.30629/0023-2149-2024-102-8-602-609