Preview

Clinical Medicine (Russian Journal)

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Analysis of laboratory indicators of inflammation, infection and indicators of subclinical atherosclerosis in patients with systemic lupus erythematosus and myocardial infarction

https://doi.org/10.30629/0023-2149-2024-102-7-542-549

Abstract

Objective of the study: to investigate the correlation between inflammation activity, infectious components, platelet function, dyslipidemia, and the development of subclinical atherosclerosis in patients with systemic lupus erythematosus (SLE) and ischemic heart disease.

Materials and methods. The study involved the measurement of C-reactive protein (CRP), interleukin 6, IgG antibodies to Chlamydia pneumonia, antibodies to toll-like receptors (TLR2), platelet factor 4 (PF4), platelet aggregation parameters, lipid profile, concentration of antibodies to oxidized low-density lipoproteins (oxLDL), and the thickness of the intima-media complex (IMT) of the common carotid arteries.

Results. The study included 50 women with SLE and 31 with myocardial infarction (MI), with a control group of 21 healthy women. Patients with SLE showed a significant increase in IMT of the common carotid artery (1.00 [0.80–1.10] > 0.80 [0.70–0.90], p = 0.01) and bifurcation of the carotid artery (1.10 [1.00–1.20] > 0.80 [0.70–1.10], p = 0.01) compared to the control group. Similarly, patients with MI had significantly different IMT values for both the common carotid artery (0.90 [0.80–1.10] > 0.80 [0.70–0.90], p = 0.01) and bifurcation (1.20 [1.10–1.40] > 0.80 [0.70–1.10], p = 0.01) compared to controls. There was pronounced activation of inflammation in SLE patients, evidenced by increased levels of CRP (3.67 [2.17–5.92] > 0.74 [0.30–1.26], p = 0.01), interleukin 6 (1.72 [1.39–2.68] > 0.60 [0.22–0.75], p = 0.01), and ESR (21.0 [18.0–26.0] > 10.0 [7.0–14.0], p = 0.01). These markers were also elevated in MI patients compared to controls: CRP (3.36 [1.44–5.90] > 0.74 [0.30–1.26], p = 0.01), interleukin 6 (1.1 [0.69–1.82] > 0.60 [0.22–0.75], p = 0.01), and ESR (19.0 [10.0–28.0] > 10.0 [7.0–14.0], p = 0.01). A significant activation of platelets was noted, with a marked increase in PF4 levels in SLE patients (21.5 [19.80–23.28] > 18.30 [13.88–20.46], p = 0.01) and MI patients (20.76 [19.00–23.50] > 18.30 [13.88–20.46], p = 0.01). SLE patients exhibited pronounced dyslipidemia, characterized by elevated levels of oxLDL antibodies (3.16 [1.45–4.60] > 1.39 [1.26–2,04], p = 0,01). In contrast, MI patients showed significant differences only in low-density lipoproteins (1.05 [0.88–1.21] < 1.32 [1.24–1.37], p = 0,01). The concentration of IgG antibodies to Chlamydia pneumonia in SLE patients (0,062 [0,035-0,124] > 0,0415 [0,022-0,071], p = 0,11) and TLR2 levels showed no significant diferences from controls (635,71 [357,14 –978,5] > 451,54 [352,05–775,0], p = 0,39). In MI patients, TLR2 levels did not differ from controls (448,98 [308,67–964,14] < 451,54 [352,05–775,0], p = 0,854). However, IgG antibodies to Chlamydia pneumonia were significantly higher in MI patients (0,067 [0,05–0,11] > 0,0415 [0,022–0,071], p = 0,026) compared to controls.

Conclusion. In addition to traditional risk factors for cardiovascular diseases, both SLE patients and those with myocardial infarction exhibit common mechanisms of autoinflammation as a form of ischemic heart disease. The inflammatory component was more pronounced in the SLE group, particularly reflected in significantly elevated concentrations of IL-6 and CRP levels. The role of the infectious component requires further investigation.

About the Authors

A. V. Arshinov
Yaroslavl State Medical University
Russian Federation

Andrey V. Arshinov — Doctor of Medical Sciences, Professor, Head of the Department of Propaedeutics of Internal Diseases

Yaroslavl



N. Yu. Levshin
Yaroslavl State Medical University
Russian Federation

Nikolay Yu. Levshin — Candidate of Medical Sciences, Associate Professor of the Department of Polyclinic Therapy, Clinical Laboratory Diagnostics and Medical Biochemistry

Yaroslavl



I. G. Maslova
Yaroslavl State Medical University
Russian Federation

Irina G. Maslova — Candidate of Medical Sciences, Assistant of the Department of Propaedeutics of Internal Diseases

Yaroslavl



V. I. Emanuylov
Yaroslavl State Medical University
Russian Federation

Vladislav I. Emanuylov — Candidate of Medical Sciences, Associate Professor of the Department of Propaedeutics of Internal Diseases

Yaroslavl



I. E. Yunonin
Yaroslavl State Medical University
Russian Federation

Igor E. Yunonin — Candidate of Medical Sciences, Associate Professor of the Department of Propaedeutics of Internal Diseases

Yaroslavl



References

1. Nasonov E.L. The modern concept of autoimmunity in rheumatology. Scientifi c and practical rheumatology. 2023;61(4):397–420. (In Russian)]. DOI: 10.47360/1995-4484-2023-397-420

2. Szekanecz Z., McInnes I.B., Schett G., Szamosi S., Benkő S., Szűcs G. Autoinfl ammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat. Rev. Rheumatol. 2021;17(10):585–595. DOI: 10.1038/s41584-021-00652-9

3. Szekanecz Z., McInnes IB., Schett G., Szamosi S., Benkő S., Szűcs G. Autoinfl ammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat. Rev. Rheumatol. 2021;17(10):585–595. DOI: 10.1038/s41584-021-00652-9

4. Nasonov E.L., Alexandrova E.N., Novikov A.A. Autoimmune rheumatic diseases: results and prospects of scientifi c research. Scientifi c and practical rheumatology. 2015;53(3): 230– 237. (In Russian)].

5. Nasonov E.L., Popkova T.V., Panafi dina T.A. Problems of early systemic lupus erythematosus during the COVID-19 pandemic. Scientifi c and practical rheumatology. 2021;59(2):119–128. In Russian)].

6. Drosos G.C., Konstantonis G., Sfi kakis P.P., Tektonidou M.G. et al. Lipid management in systemic lupus erythematosus according to risk classifi ers suggested by the European Society of Cardiology and disease-related risk factors reported by the EULAR recommendations. RMD Open. 2023;9:e002767. DOI: 10.1136/rmdopen-2022-002767

7. Weber B.N., Giles J.T., Liao K.P. Shared infl ammatory pathways of rheumatoid arthritis and atherosclerotic cardiovascular disease. Nat. Rev. Rheumatol. 2023 May 25. DOI: 10.1038/s41584-023-00969-7

8. Appleton B.D., Major A.S. The latest in systemic lupus erythema tosus-accelerated atherosclerosis: Related mechanisms infor.m assessment and therapy. Curr. Opin. Rheumatol. 2021;33(2):211–218. DOI:10.1097/BOR.0000000000000773

9. Roy P., Orecchioni M., Ley K. How the immune system shapes atherosclerosis: Roles of innate and adaptive immunity. Nat. Rev. Immunol. 2022;22(4):251–265. DOI: 10.1038/s41577-021-00584-1

10. Engelen S.E., Robinson A.J.B., Zurke YX., Monaco C. Therapeutic strategies targeting infl ammation and immunity in atherosclerosis: How to proceed? Nat. Rev. Cardiol. 2022;19(8):522–542. DOI: 10.1038/s41569-021-00668-4

11. Conrad N., Verbeke G., Molenberghs G., Goetschalckx L., Callender T., Cambridge G. et al. Autoimmune diseases and cardiovascular risk: a population-based study on 19 autoimmune diseases and 12 cardiovascular diseases in 22 million individuals in the UK. Lancet. 2022;400(10354):733–743. DOI: 10.1016/S0140-6736(22)01349-6

12. Guzmán-Martínez G., Marañón C. Immune mechanisms associated with cardiovascular disease in systemic lupus erythematosus: A path to potential biomarkers. Front. Immunol. 2022.13:974826. DOI: 10.3389/fimmu.2022.974826

13. Yazdany J., Pooley N., Langham J., Nicholson L., Langham S. et al. Systemic lupus erythematosus; stroke and myocardial infarction risk: a systematic review and meta-analysis. RMD Open. 2020;6(2):e001247. DOI: 10.1136/rmdopen-2020-001247

14. Gerasimova E.V., Popkova T.V., Gerasimova D.A., Kirichenko T.V. Macrophage Dysfunction in Autoimmune Rheumatic Diseases and Atherosclerosis. Int. J. Mol. Sci. 2022;23(9):4513. DOI: 10.3390/ijms23094513

15. Reiss A.B., Jacob B., Saba A., Carsons S.E., DeLeon J. et al. Understanding Accelerated Atherosclerosis in Systemic Lupus Erythematosus: Toward Better Treatment and Prevention. Infl ammation. 2021;44(5):1663–1682. DOI: 10.1007/s10753-021-01455-6

16. Nasonova V.A. Systemic lupus erythematosus. M., Medicine, 1972. (In Russian)].

17. Aseeva E.A., Soloviev S.K., Nasonov E.L. Modern methods for assessing the activity of systemic lupus erythematosus. Scientifi c and practical rheumatology. 2013;2(51):186–200. (In Russian)].

18. López P., Rodríguez-Carrio J., Martínez-Zapico A., Pérez-Álvarez A.I., Suárez-Díaz S. et al. Low-density granulocytes and monocytes as biomarkers of cardiovascular risk in systemic lupus erythematosus. Rheumatology (Oxford). 2020;59(7):1752–1764. DOI: :10.1093/rheumatology/keaa016

19. Ridker P.M., Rane M. Interleukin-6 Signaling and Anti-Interleukin-6 Therapeutics in Cardiovascular Disease. Circulation Research. 2021;128:1728–1746. DOI: 10.1161/CIRCRESAHA.121.319077

20. Tanhapour M., Miri A., Vaisi-Raygani A. Synergism between apolipoprotein E Ɛ4 allele and paraoxonase (PON1) 55-M allele is associated with risk of systemic lupus erythematosus. Clinical Rheumatology. 2018;37:971–977. DOI: 10.1007/s10067-017-3859-3

21. Khatana C., Saini N.K., Chakrabarti S., Saini V., Sharma A. et al. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. Oxid. Med. Cell. Longev. 2020;2020:5245308. DOI:10.1155/2020/5245308

22. Hedar A.M., Stradner M.H., Roessler A., Goswami N. Autoimmune Rheumatic Diseases and Vascular Function: The Concept of Autoimmune Atherosclerosis. J. Clin. Med. 2021;10(19):4427. DOI:10.3390/jcm10194427

23. Obermayer G., Afonyushkin T., Binder C.J. Oxidized low-density lipoprotein in infl ammation-driven thrombosis. J. Thromb. Haemost. 2018;16(3):418–428. DOI: 10.1111/jth.13925

24. Theofi lis P. Panagiotis T., Sagris M., Antonopoulos A.S., Oikonomou E. et al. Infl ammatory Mediators of Platelet Activation: Focus on Atherosclerosis and COVID-19. Int. J. Mol. Sci. 2021;16;22(20):11170. DOI: 10.3390/ijms222011170

25. Peng Kong, Zi-Yang Cui, Xiao-Fu Huang, Dan-Dan Zhang, Rui-Juan Guo et al. Infl ammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct. Target Ther. 2022;7:131. DOI: 10.1038/s41392-022-00955-7

26. Gremmel T., Ay C., Riedl J., Kopp C.W., Eichelberger B. et al. Platelet-specifi c markers are associated with monocyte-platelet aggregate formation and thrombin generation potential in advanced atherosclerosis. Thromb. Haemost. 2015;115(3):615–621. DOI: 10.1160/TH15-07-0598

27. Badrnya S., Schrottmaier W.C., Kral J.B., Yaiw K.C., Volf I. et al. Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler. Thromb. Vasc. Biol. 2014;34(3):571–580. DOI: 10.1161/ATVBAHA.113.302919

28. Hally K.E., La Flamme A.C., Larsen P.D., Harding S.A. Platelet Tolllike receptor (TLR) expression and TLR-mediated platelet activation in acute myocardial infarction. Thromb. Res. 2017;158:8–15. DOI: 10.1016/j.thromres.2017.07.031

29. Peng Kong, Zi-Yang Cui, Xiao-Fu Huang, Dan-Dan Zhang, Rui-Juan Guo et al. Infl ammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 2022;7:131. DOI: 10.1038/s41392-022-00955-7

30. Li B., Xia Y., Hu B. Infection and atherosclerosis: TLR-dependent pathways. Cell. Mol. Life Sci. 2020;77(14):2751–2769. DOI: 10.1007/s00018-020-03453-7

31. Lei Xue, Yan-Hong Liang, Yuan-Yuan Gao, Xiao-Juan Wang. Clinical study of chlamydia pneumoniae infection in patients with coronary heart disease. BMC Cardiovasc. Disord. 2019;19:110. DOI: 10.1186/s12872-019-1099-y

32. Miao G., Zhao X., Wang B.., Zhang L., Wang G. et al. TLR2/CXCR4 coassociation facilitates Chlamydia pneumonia infection-induced atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 2020;1,318(6):1420–1435. DOI: 10.1152/ajpheart.00011.2020

33. Drosos G.C., Konstantonis G., Sfi kakis P.P., Tektonidou M.G. Underperformance of clinical risk scores in identifying vascular ultrasound-based high cardiovascular risk in systemic lupus erythematosus. European Journal of Preventive Cardiology. 2021;28(3):346– 352. DOI: 10.1093/eurjpc/zwaa256


Review

For citations:


Arshinov A.V., Levshin N.Yu., Maslova I.G., Emanuylov V.I., Yunonin I.E. Analysis of laboratory indicators of inflammation, infection and indicators of subclinical atherosclerosis in patients with systemic lupus erythematosus and myocardial infarction. Clinical Medicine (Russian Journal). 2024;102(7):542-549. (In Russ.) https://doi.org/10.30629/0023-2149-2024-102-7-542-549

Views: 165


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)