

mRNA therapy effective treatment of rare hereditary diseases
https://doi.org/10.30629/0023-2149-2024-102-5-6-410-414
Abstract
mRNA therapy, or mRNA-based drugs that have emerged thanks to vaccines against SARS-CoV-2, have successfully passed preclinical tests and are currently at various stages of clinical trials in the treatment of many diseases, including rare metabolic disorders. In the case of rare genetic metabolic diseases, the concept of mRNA therapy can be considered as an alternative to protein replacement therapy, where exogenous mRNA leads to the production of a fully active protein instead of a non-functional one, and also delivers it to the desired cellular compartment, such as mitochondria or the cell membrane. Preclinical studies on animal models of some rare genetic diseases have fully confrmed the validity of this concept. In this mini-review, we examine and discuss the mentioned preclinical studies on efficacy and safety in several animal models. For all the diseases considered, mRNA therapy restored functional protein to therapeutically significant levels in target organs, led to stable and reproducible results after each dose of mRNA, and was well tolerated, as confirmed by functional liver tests evaluated in animal models, including non-human primates. These data convincingly confirm the potential of clinical development of mRNA therapy for the treatment of various rare metabolic disorders.
About the Authors
K. A. AitbaevKyrgyzstan
Kubanych A. Aitbaev — Doctor of Medical Sciences, Professor, Head of the Laboratory of Pathological Physiology and Immunology, member of the Board of the Association of Specialists for Chronic Kidney Disease in Kyrgyzstan
Bishkek
I. T. Murkamilov
Kyrgyzstan
Ilkhom T. Murkamilov — Doctor of Medical Sciences, Associate Professor at the Department of Internal Medicine; Associate Professor of Therapy No. 2 at the Medical Faculty, Chairman of the board of the Association of Specialists in Chronic Kidney Disease in Kyrgyzstan
Bishkek
V. V. Fomin
Russian Federation
Viktor V. Fomin — Doctor of Medical Sciences, Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Department of Faculty Therapy №1 at N. V. Sklifosovsky Institute of Clinical Medicine, Vice-Rector for Innovation and Clinical Activity
Moscow
F. A. Yusupov
Kyrgyzstan
Furkat A. Yusupov — Doctor of Medical Sciences, Professor, Head of the Department of Neurology, Neurosurgery and Psychiatry at the medical faculty, member of the Board of the Association of Specialists for Chronic Kidney Disease in Kyrgyzstan and chief neurologist in the southern region of Kyrgyzstan
Osh
References
1. Федеральный закон от 21 ноября 2011 г. № 323-ФЗ «Об основах охраны здоровья граждан в Российской Федерации». Еlectronic resource]. URL: https//minzdrav.gov.ru/documents//7025
2. European Union. Regulation (EC) N°141/2000 of the European Parliament and of the Council of 16 December1999 оn оrphan medicinal products. 2000. [Еlectronic resource]. URL: http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2000:018:0001:0005:EN:PDF
3. National Institute of Health. Public Law 97–414 97th Congress. Jan 4, 1983. [Еlectronic resource]. URL: https://history.nih.gov/research/downloads/PL97-414.pdf
4. Nguengang Wakap S., Lambert D.M., Olry A. et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur. J. Hum. Genet. 2020;28:165–173. DOI: 10.1038/s41431-019-0508-0
5. Menon J., Vij M., Sachan D. et al. Pediatric metabolic liver diseases: Evolving role of liver transplantation. World J. Transplant. 2021;11(6):161–179. DOI: 10.5500/wjt.v11.i6.161
6. Ferreira C.R., Cassiman D., Blau N. Clinical and biochemical footprints of inherited metabolic diseases. II. Metabolic liver diseases. Mol. Genet. Metab. 2019;127(2):117–121. DOI: 10.1016/j.ymgme.2019.04.002
7. Elborn J.S. Cystic fibrosis. Lancet. 2016; 388(10059):2519–2531. DOI: 10.1016/S0140-6736(16)00576-6
8. Shteinberg M., Haq I.J., Polineni D., Davies J.C. Cystic fibrosis. Lancet. 2021;397(10290):2195–2211. DOI: 10.1016/S0140-6736(20)32542-3
9. Robinson E., MacDonald K.D., Slaughter K. et al. Lipid nanoparticle-delivered chemically modified mrna restores chloride secretion in cystic fibrosis. Molecular Therapy. 2018;26(8):2034–2046. DOI: 10.1016/j.ymthe.2018.05.014
10. Miah K.M., Hyde S.C., Gill D.R. Emerging gene therapies for cystic fibrosis. Expert Rev. Respir. Med. 2019;13(8):709–725. DOI: 10.1080/17476348.2019.1634547
11. Lichter-Konecki U., Vockley J. Phenylketonuria: current treatments and future developments. Drugs. 2019;79(5):495–500. DOI: 10.1007/s40265-019-01079-z
12. van Spronsen F.J., Blau N., Harding C. et al. Phenylketonuria. Nat. Rev. Dis. Primers. 2021;7:36. DOI: 10.1038/s41572-021-00267-0
13. Cacicedo M.L., Weinl-Tenbruck C., Frank D. et al. Phenylalanine hydroxylase mRNA rescues the phenylketonuria phenotype in mice. Front Bioeng. Biotechnol. 2022;10:993298. DOI: 10.3389/fbioe.2022.993298
14. Perez-Garcia C.G., Diaz-Trelles R., Vega J.B. et al. Development of an mRNA replacement therapy for phenylketonuria. Mol. Ther. Nucleic. Acids. 2022;28:87–98. DOI: 10.1016/j.omtn.2022.02.020
15. Almási T., Guey L.T., Lukacs C. et al. Systematic literature review and meta-analysis on the epidemiology of methylmalonic acidemia (MMA) with a focus on MMA caused by methylmalonyl-CoA mutase (mut) deficiency. Orphanet. J. Rare Dis. 2019;14(1):84. DOI: 10.1186/s13023-019-1063-z
16. Fraser J.L., Venditti C.P. Methylmalonic and propionic acidemias: clinical management update. Curr. Opin. Pediatr. 2016;28(6):682– 693. DOI: 10.1097/MOP.0000000000000422
17. An D., Schneller J.L., Frassetto A. et al. Systemic messenger RNA therapy as a treatment for methylmalonic acidemia. Cell Rep. 2017; 21(12):3548-3558. Erratum in Cell Rep. 2018;24(9):2520. DOI: 10.1016/j.celrep.2017.11.081
18. An D., Frassetto A., Jacquinet E. et al. Long-term efficacy and safety of mRNA therapy in two murine models of methylmalonic acidemia. EBioMedicine. 2019;45:519–528. DOI: 10.1016/j.ebiom.2019.07.003
19. Wongkittichote P., Ah Mew N., Chapman K.A. Propionyl-CoA carboxylase — A review. Mol. Genet. Metab. 2017;122(4):145–152. DOI: 10.1016/j.ymgme.2017.10.002
20. Jiang L., Park J.S., Yin L. et al. Dual mRNA therapy restores metabolic function in long-term studies in mice with propionic acidemia. Nat. Commun. 2020;11:5339. DOI: 10.1038/s41467-020-19156-3
21. Sever S., Weinstein D.A., Wolfsdorf J.I. et al. Glycogen storage disease type Ia: linkage of glucose, glycogen, lactic acid, triglyceride, and uric acid metabolism. J. Clin. Lipidol. 2012;6(6):596–600. DOI: 10.1016/j.jacl.2012.08.005
22. Cao J., Choi M., Guadagnin E. et al. mRNA therapy restores euglycemia and prevents liver tumors in murine model of glycogen storage disease. Nat. Commun. 2021;12:3090. DOI: 10.1038/s41467-021-23318-2
23. Lichter-Konecki U., Caldovic L., Morizono H. et al. Ornithine Transcarbamylase Deficiency. 2013 Aug 29 [updated 2022 May 26]. In: Adam M.P., Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Amemiya A., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2023. PMID: 24006547
24. Prieve M.G., Harvie P., Monahan S.D. et al. Targeted mRNA therapy for ornithine transcarbamylase deficiency. Mol. Ther. 2018;26(3):801–813. DOI: 10.1016/j.ymthe.2017.12.024
Review
For citations:
Aitbaev K.A., Murkamilov I.T., Fomin V.V., Yusupov F.A. mRNA therapy effective treatment of rare hereditary diseases. Clinical Medicine (Russian Journal). 2024;102(5-6):410-414. (In Russ.) https://doi.org/10.30629/0023-2149-2024-102-5-6-410-414