Preview

Клиническая медицина

Расширенный поиск

Кишечная микробиота: новые возможности диагностики и лечения

https://doi.org/10.30629/0023-2149-2024-102-4-297-308

Аннотация

Микробиота кишечника вносит неоспоримый вклад в функционирование многочисленных систем организма, включая высшую нервную деятельность и поведенческие реакции, в значительной части предопределяет активность иммунной системы. К настоящему времени накоплен большой объем знаний о значимости состава, разнообразия и функциональных свойств микробиоты кишечника как для поддержания состоянии здоровья человека, так и для формирования целого ряда заболеваний. Изменения в организме человека неизбежно сопровождаются изменениями видового состава, разнообразия микробиоты. Установлены определенные закономерности изменения микробиома кишечника человека в течение жизни, а также изменения его функциональной активности под влиянием внешних факторов, пищевых пристрастий. Обзор, выполненный по результатам поиска в базах данных и электронных библиотеках PubMed (MEDLINE), Embase, Cochrane Library, Google Scholar, eLibrary в период с 2012 по 2023 г., посвящен анализу микробиоты кишечника как маркера и предиктора хронических социально значимых неинфекционных заболеваний, а также неотъемлемого компонента достижения здоровья в условиях персонализированного подхода современных терапевтических стратегий.

Об авторах

И. В. Маев
ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России
Россия

Маев Игорь Вениаминович — д-р мед. наук, профессор, академик РАН, первый проректор, заведующий кафедрой пропедевтики внутренних болезней и гастроэнтерологии



С. В. Лямина
ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России
Россия

Лямина Светлана Владимировна — д-р мед. наук, профессор кафедры пропедевтики внутренних болезней и гастроэнтерологии, заведующая лабораторией молекулярной патологии пищеварения
научно-исследовательского центра биомедицинских исследований



Список литературы

1. Lynch S.V., Ng S.C., Shanahan F. et al. Translating the gut microbiome: ready for the clinic? Nat. Rev. Gastroenterol. Hepatol. 2019;16:656–661.

2. Liu Y.-X., Chen T., Li D. et al. iMeta: integrated meta-omics for biology and environments. iMeta. 2022;1:e15.

3. Li W., Wang L., Li X. et al. Sequence-based functional metagenomics reveals novel natural diversity of functioning CopA in environmental microbiomes. Genom. Proteom. Bioinform. 2022. DOI:10.1101/2022.02.12.480192

4. Wang B., Yao M., Lv L., Ling Z., Li L. The human microbiota in health and disease. Engineering. 2017;3:71–82. 10.1016/J.ENG.2017.01.008

5. Relman D.A. The human microbiome: ecosystem resilience and health. Nutr. Rev. 2012;70(1):S2 –9. DOI: 10.1111/j.1753-4887.2012.00489.x

6. Sender R., Fuchs S., Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14:e1002533. DOI: 10.1371/journal.pbio.1002533

7. Donaldson G.P., Lee S.M., Mazmanian S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2016;14:20–32. DOI: 10.1038/nrmicro3552

8. Goodrich J.K., Davenport E.R., Clark A.G., Ley R.E. The Relationship Between the Human Genome and Microbiome Comes into View. Annu. Rev. Genet. 2017;51:413–433. DOI: 10.1146/annurev-genet-110711-155532

9. Ahlawat S., Sharma K. K. Gut–organ axis: A microbial outreach and networking. Lett. Appl. Microbiol. 2021;72 :636–668. 10.1111/lam.13333

10. Manor O., Dai C.L., Kornilov S.A. et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 2020;11:5206. DOI: 10.1038/s41467-020-18871-1

11. Hajjo R., Sabbah D.A., Al Bawab A.Q. Unlocking the Potential of the Human Microbiome for Identifying Disease Diagnostic Biomarkers. Diagnostics (Basel). 2022;12(7):1742. DOI: 10.3390/diagnostics12071742

12. Marcos-Zambrano L.J. et al. Applications of machine learning in human microbiome studies: a review on feature selection, biomarker identifi cation, disease prediction and treatment. Front. Microbiol. 19 February 2021. DOI: 10.3389/fmicb.2021.634511

13. Tyakht A.V., Kostryukova E.S., Maev I.V. et al. Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun. 2013;4:2469. DOI: 10.1038/ncomms3469. PMID: 24036685

14. Sommer F., Bäckhed F. The gut microbiota — Masters of host development and physiology. Nat. Rev. Microbiol. 2013;11:227–238. DOI: 10.1038/nrmicro2974

15. Perry R.J., Peng L., Barry N.A., Cline G.W., Zhang D., Cardone R.L. et al. Acetate mediates a microbiome-brain-β cell axis promoting metabolic syndrome. Nature. 2016;7606:213–217. DOI: 10.1038/ nature18309

16. McRae M.P. Dietary fi ber is benefi cial for the prevention of cardiovascular disease: an umbrella review of meta-analyses. J. Chiropr. Med. 2017;16:289–299. DOI: 10.1016/j.jcm.2017.05.005

17. Akshintala V.S., Talukdar R., Singh V.K., Goggins M. The gut microbiome in pancreatic disease. Clin. Gastroenterol. Hepatol. 2018;17:290–295. DOI: 10.1016/j.cgh.2018.08.045

18. Diamanti A.P., Rosado M.M., Laganà B., D’Amelio R. Microbiota and chronic infl ammatory arthritis: An interwoven link. J. Transl. Med. 2016;14:233. DOI: 10.1186/s12967-016-0989-3

19. Kang L., Li P., Wang D., Wang T., Hao D., Qu X. Alterations in intestinal microbiota diversity, composition, and function in patients with sarcopenia. Nature. 2021;11:4628. DOI: 10.1038/s41598-021-84031-0

20. Gentile F., Doneddu P.E., Riva N., Nobile-Orazio E., Quattrini A. Diet, microbiota and brain health: unraveling the network intersecting metabolism and neurodegeneration. Int. J. Mol. Sci. 2020;21:7471. DOI: 10.3390/ijms21207471

21. Friedland R.P. Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J. Alzheimer’s Dis. 2015;45:349–352. DOI: 10.3233/JAD-142841

22. Baldini F., Hertel J., Sandt E., Thinnes C.C., Neuberger-Castillo L., Pavelka L. et al. Parkinson’s disease-associated alterations of the gut microbiome predict disease relevant changes in metabolic functions. BMC Biol. 2020;18:62. DOI: 10.1186/s12915-020-00775-7

23. Goyal D., Ali S.A., Singh R.K. Emerging role of gut microbiota in modulation of neuroinfl ammation and neurodegeneration with emphasis on Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2021;106:9. DOI: 10.1016/j.pnpbp.2020.110112

24. Lazar V., Ditu L.-M., Pircalabioru G.G., Gheorghe I., Curutiu C., Holban A.M. et al. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front. Immunol. 2018;9:1830. DOI: 10.3389/fimmu.2018.01830

25. Hotamisligil G.S. Infl ammation, metafl ammation and immunometabolic disorders. Nature. 2017;542:177–185. DOI: 10.1038/nature21363

26. Menzel A., Samouda H., Dohet F., Loap S., Ellulu M.S., Bohn T. Common and novel markers for measuring infl ammation and oxidative stress ex vivo in research and clinical practice — which to use regarding disease outcomes? Antioxidants. 2021;10:414. DOI: 10.3390/antiox10030414

27. Vijay A., Valdes A.M. Role of the gut microbiome in chronic diseases: a narrative review. Eur. J. Clin. Nutr. 2022;76:489–501.DOI: 10.1038/s41430-021-00991-6

28. Ghosh T.S., Shanahan F. & O’Toole P.W. The gut microbiome as a modulator of healthy ageing. Nat. Rev. Gastroenterol. Hepatol. 2022;19:565–584. DOI: 10.1038/s41575-022-00605-x

29. Hasavci D., Blank T. Age-dependent eff ects of gut microbiota metabolites on brain resident macrophages. Front Cell Neurosci. 2022;16:944526. DOI: 10.3389/fncel.2022.944526

30. An R., Wilms E., Masclee A.A.M. et al. Age-dependent changes in GI physiology and microbiota: time to reconsider? Gut. 2018;67:2213 – 2222.

31. Simões C.D., Maganinho M., Sousa A.S. FODMAPs, infl ammatory bowel disease and gut microbiota: Updated overview on the current evidence. Eur. J. Nutr. 2022;61:1187–1198. DOI: 10.1007/s00394-021-02755-1

32. Santacroce L., Man A., Charitos I.A., Haxhirexha K., Topi S. Current knowledge about the connection between health status and gut microbiota from birth to elderly. A narrative review. Front. Biosci. 2021;26:135–148. DOI: 10.52586/4930

33. Rowland I., Gibson G., Heinken A., Scott K., Swann J., Thiele I., et al. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018;57:1–24. DOI: 10.1007/s00394-017-1445-8

34. Fava F., Rizzetto L., Tuohy K. Gut microbiota and health: Connecting actors across the metabolic system. Proc. Nutr. Soc. 2019;78:177– 188. DOI: 10.1017/S0029665118002719

35. Ribaldone D.G., Pellicano R., Fagoonee S., Actis G.C. Modulation of the gut microbiota: Opportunities and regulatory aspects. Minerva Gastroenterol. 2022. DOI: 10.23736/S2724-5985.22.03152-7

36. Afzaal M., Saeed F., Shah Y.A., Hussain M., Rabail R., Socol C.T. et al. Human gut microbiota in health and disease: Unveiling the relationship. Front Microbiol. 2022;13:999001. DOI: 10.3389/fmicb.2022.999001

37. Von Martels J.Z., Sadabad M.S., Bourgonje A.R. et al. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut. Anaerobe. 2017;44:3–12. DOI: 10.1016/j.anaerobe.2017.01.001

38. Kho Z.Y., Lal S.K. The human gut microbiome — a potential controller of wellness and disease. Front. Microbiol. 2018;9:1835. DOI: 10.3389/fmicb.2018.01835

39. Szablewski L. Human gut microbiota in health and Alzheimer’s disease. J. Alzheimers Dis. 2018;62:549–560. DOI: 10.3233/JAD170908

40. Cani P.D., Van Hul M. Do diet and microbes really ‘PREDICT’ cardiometabolic risks? Nat. Rev. Endocrinol. 2021;17:259–60. DOI: 10.1038/s41574-021-00480-7

41. Cani P.D., Moens de Hase E., Van Hul M. Gut microbiota and host metabolism: from proof of concept to therapeutic intervention. Microorganisms. 2021;9:1302. DOI: 10.3390/microorganisms9061302

42. Cani P.D., Van Hul M.. Mediterranean diet, gut microbiota and health: when age and calories do not add up! Gut. 2020;69:1167–8. DOI: 10.1136/gutjnl-2020-320781

43. Rauf A., Khalil A.A., Rahman U.U. et al. Recent advances in the therapeutic application of short-chain fatty acids (SCFAs): An updated review. Crit. Rev. Food Sci. Nutr. 2022;62:6034–6054.

44. Wang M., Wichienchot S., He X., Fu X., Huang Q., Zhang B. In vitro colonic fermentation of dietary fi bers: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends Food Sci. Technol. 2019;88:1–9. DOI: 10.1016/j.tifs.2019.03.005

45. Havenaar R. Intestinal health functions of colonic microbial metabolites: A review. Benef. Microbes 2011;2:103–114. DOI: 10.3920/BM2011.0003

46. Steliou K., Boosalis M.S., Perrine S.P., Sangerman J., Faller D.V. Butyrate histone deacetylase inhibitors. Biores. Open Access. 2012;1:192–198. DOI: 10.1089/biores.2012.0223

47. Cani P.D. Human gut microbiome: Hopes, threats and promises. Gut. 2018;67:1716–1725. DOI: 10.1136/gutjnl-2018-316723

48. Zi-Han Geng, Yan Zhu, Quan-Lin Li, Chao Zhao, Ping-Hong Zhou. Enteric Nervous System: the brigde between the gut microbiota and neurological disorders. Front Aging Neurosci. 2022;14:810483. DOI: 10.3389/fnagi.2022.810483

49. Arany Z., Neinast, M. Branched chain amino acids in metabolic disease. Curr. Diab. Rep. 2018;18(10):76. DOI: 10.1007/s11892-018-1048-7

50. Matsumura A., Ghosh A., Pope G.S., Darbre P.D. Comparative study of oestrogenic properties of eight phytoestrogens in MCF7 human breast cancer cells. J. Steroid Biochem. Mol. Biol. 2005;94(5):431– 443. DOI: 10.1016/j.jsbmb.2004.12.041

51. Ramírez-Macías I., Orenes-Piñero E., Camelo-Castillo A., Rivera-Caravaca J.M., López-García C., Marín F. Novel insights in the relationship of gut microbiota and coronary artery diseases. Crit. Rev. Food Sci. Nutr. 2022;62:3738–3750. DOI: 10.1080/10408398.2020.1868397

52. Psichas A., Sleeth M.L., Murphy K.G. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. 2015;39:424–429. DOI: 10.1038/ijo.2014.153

53. Larraufi e P., Martin-Gallausiaux C., Lapaque N. et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci. Rep. 2018;8:74. DOI: 10.1038/s41598-017-18259-0

54. Mischke M., Plösch T. The gut microbiota and their metabolites: Potential implications for the host epigenome. Microb. Hum. Body. 2016;902:33–44. DOI: 10.1007/978-3-319-31248-4_3

55. Hendrikx T., Schnabl B. Indoles: Metabolites produced by intestinal bacteria capable of controlling liver disease manifestation. J. Intern. Med. 2019;286:32–40. DOI: 10.1111/joim.12892

56. Lightfoot Y.L., Yang T., Sahay B., Mohamadzadeh M. Targeting aberrant colon cancer-specifi c DNA methylation with lipoteichoic acid-defi cient Lactobacillus acidophilus. Gut. Microbes. 2013;4:84– 88. DOI: 10.4161/gmic.22822

57. Larrosa M., González-Sarrías A., Yáñez-Gascón M.J. et al. Anti-infl ammatory properties of a pomegranate extract and its metabolite urolithin — A in a colitis rat model and the eff ect of colon infl ammation on phenolic metabolism. J. Nutr. Biochem. 2010;21:717–725. DOI: 10.1016/j.jnutbio.2009.04.012

58. Smallwood T., Allayee H., Bennett B.J. Choline metabolites: Gene by diet interactions. Curr. Opin. Lipidol. 2016;27:33. DOI: 10.1097/ MOL.0000000000000259

59. Rooks M.G., Garrett W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016;16:341–352. DOI: 10.1038/nri.2016.42

60. Tofalo R., Cocchi S., Suzzi G. Polyamines and gut microbiota. Front. Nutr. 2019;6:16. DOI: 10.3389/fnut.2019.00016

61. Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W. Host-gut microbiota metabolic interactions. Science. 2012;336:1262– 1267. DOI: 10.1126/science.1223813

62. Forster V.J., McDonnell A., Theobald R., McKay J.A. Eff ect of methotrexate/vitamin B12 on DNA methylation as a potential factor in leukemia treatment-related neurotoxicity. Epigenomics. 2017;9:1205–1218. DOI: 10.2217/epi-2016-0165

63. Yao C.K., Muir J.G., Gibson P.R. Insights into colonic protein fermentation, its modulation and potential health implications. Aliment. Pharmacol. Ther. 2016;43:181–196. DOI: 10.1111/apt.13456

64. Wu J., Wang K., Wang X., Pang Y., Jiang C. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell. 2021;12:360–373. DOI: 10.1007/s13238-020-00814-7

65. Pessa-Morikawa T. et al. Maternal microbiota-derived metabolic profi le in fetal murine intestine, brain and placenta. BMC Microbiol. 2022;22(1):46. DOI: 10.1186/s12866-022-02457-6

66. Zierer J. et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 2018;50(6):790–795. DOI: 10.1038/s41588-018-0135-7

67. Zakharzhevskaya N. Lyamina S.V., Maev I.V. et al. НS-GC/MSbased metabolomics approach for volatile compounds analysis in IBD. United European Gastroenterology Journal. 2021;9(S8):471.

68. Lyamina S., Maev I., Govorun V. Precision diagnostics in IBD: metabolomic and genetic profi ling. United European Gastroenterology Journal. 2021;9(S8):471–472.

69. Lyamina S.V., Govorun V.M., Maev I.V. Metabolomic profi ling in IBD: early diff erential diagnostics in Crohn’s disease and ulcerative colitis patients. Gut. 2022;71(S2):A126.

70. Lyamina S., Maev I., Govorun V. Combined metabolomic and genomic profi ling as a screening non-invasive diagnostic method in Crohn’s disease patients. Gut. 2023;72(S1):A220.

71. Sharon G. et al. Specialized metabolites from the microbiome in health and disease. Cell Metab. 2014;20(5):719–730. DOI:10.1016/j.cmet.2014.10.016

72. Маев И.В., Говорун В.М., Лямина С.В. и др. Способ определения риска развития воспалительного заболевания кишечника по характеристике метаболитов. Официальный бюллетень Феде ральной службы по интеллектуальной собственности (Роспатент) №7; опубликовано 28.02.2023.

73. Маев И.В., Говорун В.М., Лямина С.В., Захаржевская Н.Б., Конанов Д.Н., Кардонский Д.А., Кривонос Д.В., Куприянова О.В., Маркелова М.И., Григорьева Т.В. Способ скрининговой неинвазивной диагностики болезни Крона методами метаболомно-геномного профилирования. Официальный бюллетень Федеральной службы по интеллектуальной собственности (Роспатент) №16; опубликовано 06.06.2023.

74. Lazar V., Ditu L.M., Pircalabioru G.G. et al. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front. Immunol. 2018;9:1830. DOI: 10.3389/fi mmu.2018.01830

75. Elmassry M. M., Zayed A., Farag M.A. Gut homeostasis and microbiota under attack: Impact of the diff erent types of food contaminants on gut health. Crit. Rev. Food Sci. Nutr. 2020;62:738–763. DOI: 10.1080/10408398.2020.1828263

76. Schluter J., Peled J.U., Taylor B. et al. The gut microbiota is associated with immune cell dynamics in humans. Nature. 2020;588:303– 307. DOI: 10.1038/s41586-020-2971-8

77. Francino M.P. Early development of the gut microbiota and immune health. Pathogens. 2014;3:769–790. DOI: 10.3390/pathogens3030769

78. Owaga E., Hsieh R.H., Mugendi B., Masuku S., Shih C.K., Chang J.S. Th17 cells as potential probiotic therapeutic targets in infl ammatory bowel diseases. Int. J. Mol. Sci. 2015;16:20841–20858. DOI: 10.3390/ijms160920841

79. Tomkovich S., Jobin C. Microbiota and host immune responses: A love–hate relationship. Immunology. 2016;147:1–10. DOI: 10.1111/imm.12538

80. Rossi M., Bot A. The Th17 cell population and the immune homeostasis of the gastrointestinal tract. Int. Rev. Immunol. 2013;32:471– 474.

81. Pickard J.M., Zeng M.Y., Caruso R., Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and infl ammatory disease. Immunol. Rev. 2017;279:70–89. DOI: 10.1111/imr.12567

82. Wu H.J., Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3:4–14. DOI: 10.4161/gmic.19320

83. Andréasson K., Alrawi Z., Persson A., Jönsson G., Marsal J. Intestinal dysbiosis is common in systemic sclerosis and associated with gastrointestinal and extraintestinal features of disease. Arthrit. Res. Ther. 2016;18:278. DOI: 10.1186/s13075-016-1182-z

84. Rinninella E., Raoul P., Cintoni M. et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7:14. DOI: 10.3390/microorganisms7010014

85. Qin J., Li Y., Cai Z. et al. A metagenome‐wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. DOI: 10.1038/nature11450

86. The Integrative Human Microbiome Project. The integrative human microbiome project. Nature. 2019;569(7758):641–8. DOI: 10.1038/s41586-019-1238-8

87. Leiva‐Gea I., Sanchez‐Alcoholado L., Martin‐Tejedor B. et al. Gut microbiota diff ers in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: a case‐control study. Diabetes Care. 2018;41(11):2385–2395. DOI: 10.2337/dc18-0253

88. Zackular J.P., Rogers M.A.M., MTt R., Schloss P.D. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev. Res. (Phila). 2014;7(11):1112–21. DOI: 10.1158/1940-6207. CAPR-14-0129

89. Qin N., Yang F., Li A. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513(7516):59–64. DOI: 10.1038/nature13568

90. Ren Z., Li A., Jiang J. et al. Gut microbiome analysis as a tool towards targeted non‐invasive biomarkers for early hepatocellular carcinoma. Gut. 2019;68(6):1014–23. DOI: 10.1136/gutjnl-2017-315084

91. Zimmermann P., Curtis N. The infl uence of the intestinal microbiome on vaccine responses. Vaccine. 2018;36(30):4433–9. DOI: 10.1016/j.vaccine.2018.04.066

92. Zimmermann P., Messina N., Mohn W.W., Finlay B.B., Curtis N. Association between the intestinal microbiota and allergic sensitization, eczema, and asthma: a systematic review. J. Allergy Clin. Immunol. 2019;143(2):467–85.

93. Mego M., Chovanec J., Vochyanova‐Andrezalova I. et al. Prevention of irinotecan induced diarrhea by probiotics: a randomized double blind, placebo controlled pilot study. Complement. Ther. Med. 2015;23(3):356–62.

94. Lee J.R., Muthukumar T., Dadhania D. et al. Gut microbiota and tacrolimus dosing in kidney transplantation. PLoS One. 2015;10(3):e0122399.

95. Gopalakrishnan V., Spencer C.N., Nezi L. et al. Gut microbiome modulates response to anti‐PD‐1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103. DOI:10.1126/science.aan4236

96. Tian Y., Li M, Song W., Jiang R., Li Y.Q. Eff ects of probiotics on chemotherapy in patients with lung cancer. Oncol. Lett. 2019;17(3):2836–48. DOI: 10.3892/ol.2019.9906

97. Riehl T.E., Alvarado D., Ee X. et al. Lactobacillus rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells. Gut. 2019;68(6):1003–13. DOI: 10.1136/gutjnl-2018-316226

98. Huda M.N., Lewis Z., Kalanetra K.M. et al. Stool microbiota and vaccine responses of infants. Pediatrics. 2014;134(2):e362–72.

99. Harris V., Armah G., Fuentes S. et al. The infant gut microbiome correlates signifi cantly with rotavirus vaccine response in rural Ghana. J. Infect. Dis. 2016;215:34–41.

100. Eloe‐Fadrosh E.A., McArthur M.A., Seekatz A.M., Drabek E.F., Rasko D.A., Sztein M.B. et al. Impact of oral typhoid vaccination on the human gut microbiota and correlations with S. Typhi‐specific immunological responses. PLoS One. 2013;8(4):e62026.

101. Fung T.C., Olson C.A., Hsiao E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 2017;20(2):145–55. DOI: 10.1038/nn.4476

102. Miyamoto J., Mizukure T., Park S.‐B. et al. A gut microbial metabolite of linoleic acid, 10‐hydroxy‐cis‐12‐octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40‐MEK‐ERK pathway. J. Biol. Chem. 2015;290(5):2902–18.

103. Thorburn A.N., McKenzie C.I., Shen S. et al. Evidence that asthma is a developmental origin disease infl uenced by maternal diet and bacterial metabolites. Nat. Commun. 2015;6(1):1–13.

104. Barnes E.M., Carter E.L., Lewis J.D. Predicting microbiome function across space is confounded by strain‐level diff erences and functional redundancy across taxa. Front Microbiol. 2020. Feb 7;11:101. DOI: 10.3389/fmicb.2020.00101

105. Olechnovich E.I., Lyamina S.V., Maev I.V. et al. Character of microbial engraftment following the fecal microbiota transplantation in patients with infl ammatory bowel diseases. Статья в открытом архиве №PPR412798 27.10.2021.

106. Ma Z.S., Li L., Gotelli N.J. Diversity‐disease relationships and shared species analyses for human microbiome‐associated diseases. ISME J. 2019;13(8):1911–9. DOI: 10.1038/s41396-019-0395-y

107. Nishida A., Inoue R., Inatomi O., Bamba S., Naito Y., Andoh A. Gut microbiota in the pathogenesis of infl ammatory bowel disease. Clin. J. Gastroenterol. 2018;11(1):1–10. DOI: 10.1007/s12328-017-0813-5

108. Antharam V.C., Li E.C., Ishmael A. et al. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium diffi cile infection and nosocomial diarrhea. J. Clin. Microbiol. 2013;51(9):2884–92.

109. Cani PD., Bibiloni R., Knauf C. et al. Changes in gut microbiota control metabolic endotoxemia‐induced infl ammation in high‐fat diet‐induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81. DOI: 10.2337/db07-1403

110. Gulliver E.L., Young R.B., Chonwerawong M. et al. Review article: the future of microbiome-based therapeutics. Aliment. Pharmacol. Ther. 2022;56(2):192–208. DOI: 10.1111/apt.17049


Рецензия

Для цитирования:


Маев И.В., Лямина С.В. Кишечная микробиота: новые возможности диагностики и лечения. Клиническая медицина. 2024;102(4):297-308. https://doi.org/10.30629/0023-2149-2024-102-4-297-308

For citation:


Mayev I.V., Lyamina S.V. Gut microbiome: new diagnostic and treatment options. Clinical Medicine (Russian Journal). 2024;102(4):297-308. (In Russ.) https://doi.org/10.30629/0023-2149-2024-102-4-297-308

Просмотров: 497


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)