Preview

Clinical Medicine (Russian Journal)

Advanced search

Pathophysiological aspects of morphological changes in the structure of atrioventricular valves leafl ets in diabetes mellitus

https://doi.org/10.30629/0023-2149-2024-102-2-109-117

Abstract

   The increasing number of patients with diabetes in the structure of comorbid cardiothoracic patients necessitates a more detailed study of the pathophysiological mechanisms of the modifying infl uence of diabetes, taking into account new scientific data. This allows for a more systematic view of processes that were previously the prerogative of specialists.

   Content. A modern perspective on the pathophysiological mechanisms of diabetes on cardiac structures is presented, with a description of the two most signifi cant pathological syndromes — diabetic cardiomyopathy and changes in the morphological structure of the atrioventricular valve leafl ets. The expansion of the endocrinologist’s role in the examination and treatment of cardiothoracic patients is justifi ed.

   Conclusion. A systemic approach to the problem of diabetes in cardiothoracic surgery, incorporating a multidisciplinary approach and active involvement of endocrinologists at all stages of the treatment process, will improve treatment outcomes for cardiothoracic patients and reduce their postoperative recovery times.

About the Authors

V. V. Krylov
M.F. Vladimirsky Moscow Regional Research and Clinical Institute («MONIKI»)
Russian Federation

Vladislav V. Krylov, MD, Candidate of Medical Sciences, cardiovascular surgeon

Adults’ Cardiovascular Surgery Department; Emergency and Routine Counseling Department 

Moscow

РИНЦ AuthorID: 979874



M. R. Ragimov
M.F. Vladimirsky Moscow Regional Research and Clinical Institute («MONIKI»)
Russian Federation

Magomedkerim R. Ragimov, MD, endocrinologist, Candidate of Medical Sciences, researcher

Department of Therapeutic Endocrinology

Moscow

РИНЦ AuthorID: 967432



I. V. Misnikova
M.F. Vladimirsky Moscow Regional Research and Clinical Institute («MONIKI»)
Russian Federation

Inna V. Misnikova, MD, endocrinologist, Doctor of Medical Sciences, leading researcher, Professor

Department of Therapeutic Endocrinology; Department of Endocrinology with a course of particularistic endocrinology

Moscow

РИНЦ AuthorID: 559756



References

1. Glushchenko V.A., Irklienko E.K. Cardiovascular morbidity is one of the most important public health problems. Meditsina i organizatsiia zdravookhraneniia. 2019;4(1):56–63. (In Russian)

2. Robich M.P., Sellke F.W. Cardiac surgery and diabetes mellitus. In: Johnstone M., Veves A. (eds) Diabetes and Cardiovascular Disease. Contemporary Cardiology. Humana, Cham, 2023. DOI: 10.1007/978-3-031-13177-6_26

3. Sun H., Saeedi P., Karuranga S. et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice. 2022;183:109119. DOI: 10.1016/j.diabres.2021.109119

4. Dedov I.I., Shestakova M.V., Mayorov A.Yu. et al. Standards of specialized diabetes care. Edited by Dedov I.I., Shestakova M.V., Mayorov A.Yu. 11th ed. Diabetes mellitus. 2023;24(1S):1–148. (In Russian). doi: 10.14341/DM13042

5. Jia G., Hill M.A., Sowers J.R. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circulation Research. 2018;122(4):624–638. DOI: 10.1161/CIRCRESAHA.117.311586

6. Hölscher M.E., Bode C., Bugger H. Diabetic Cardiomyopathy: Does the Type of Diabetes Matter? International Journal of Molecular Sciences. 2016;17(12):2136. DOI: 10.3390/ijms17122136

7. Labombarda F., Leport M., Morello R. et al. Longitudinal left ventricular strain impairment in type 1 diabetes children and adolescents: a 2D speckle strain imaging study. Diabetes & Metabolism. 2014;40(4):292–298. DOI: 10.1016/j.diabet.2014.03.007

8. Lundbaek K. Diabetic angiopathy: a specifi c vascular disease. Lancet. 1954;266(6808):377–379. DOI: 10.1016/s0140-6736(54)90924-1

9. Rubler S., Dlugash J., Yuceoglu Y.Z. et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. The American Journal of Cardiology. 1972;30(6):595–602. DOI: 10.1016/0002-9149(72)90595-4

10. Karavaev P.G., Veklich A.S., Koziolova N.A. Cardiovascular remodeling in patients with diabetic сardiomyopathy. Russian Journal of Cardiology. 2019;24(11):42–47 . (In Russian). DOI: 10.15829/1560-4071-2019-11-42-47

11. Koziolova N.A., Karavaev P.G., Veklich A.S. Diabetic cardiomyopathy: defi nition, diagnosis criteria, treatment directions and prevention of heart failure. South Russia Journal of Therapeutic Practices. 2020;1(2):93–101. (In Russian). DOI: 10.21886/2712-8156-2020-1-2-93-101

12. Grekov I.S., Grushina M.V. Metabolic cardiomyopathy: a modern view of the problem. University Clinic. 2020;(37):139–140. (In Russian). DOI: 10.26435/uc.v0i4(37).440

13. Nakamura M., Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. The Journal of Physiology. 2020;598(14):2977–2993. DOI: 10.1113/JP276747

14. Dillmann W.H. Diabetic Cardiomyopathy. Circulation Research. 2019;124(8):1160–1162. DOI: 10.1161/CIRCRESAHA.118.314665

15. Svarovskaya A.V., Garganeeva A.A. Diabetes mellitus and heart failure — a modern look at the mechanisms of development. Diabetes mellitus. 2022;25(3):267–274. (In Russian). DOI: 10.14341/DM12648

16. Lee W.S., Kim J. Diabetic cardiomyopathy: where we are and where we are going. The Korean Journal of Internal Medicine. 2017;32(3):404–421. DOI: 10.3904/kjim.2016.208

17. Sasso F.C., Rinaldi L., Lascar N. et al. Role of Tight Glycemic Control during Acute Coronary Syndrome on CV Outcome in Type 2 Diabetes. Journal of Diabetes Research. 2018:3106056. DOI: 10.1155/2018/3106056

18. Bedi K.C. Jr, Snyder N.W., Brandimarto J. et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation. 2016;133(8):706–716. DOI: 10.1161/CIRCULATIONAHA.115.017545

19. El Hayek M.S., Ernande L., Benitah J.-P. et al. The role of hyperglycaemia in the development of diabetic cardiomyopathy. Archives of Cardiovascular Diseases. 2021;114(11):748–760. DOI: 10.1016/j.acvd.2021.08.004

20. Evangelista I., Nuti R., Picchioni T. et al. Molecular dysfunction and phenotypic derangementin diabetic cardiomyopathy. International Journal of Molecular Sciences. 2019;20(13):3264. DOI: 10.3390/ijms20133264

21. Salvatore T., Pafundi P.C., Galiero R. et al. The diabetic cardiomyopathy: the contributing pathophysiological mechanisms. Frontiers in Medicine. 2021;8:695792. DOI: 10.3389/fmed.2021.695792

22. Jia G., DeMarco V.G., Sowers J.R. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nature Reviews Endocrinology. 2016;12(3):144–153. DOI: 10.1038/nrendo.2015.216

23. Gollmer J., Zirlik A., Bugger H. Mitochondrial mechanisms in diabetic cardiomyopathy. Diabetes & Metabolism Journal. 2020;44(1):33–53. DOI: 10.4093/dmj.2019.0185

24. Simon D., Jocelyne M., Bertrand C., Xavier P. Chronic O-GlcNAcylation and diabetic cardiomyopathy: the bitterness of glucose. Frontiers in Endocrinology. 2018;9:642. DOI: 10.3389/fendo.2018.00642

25. Laksono S., Hosea G.T., Nurusshofa Z. Diabetic cardiomyopathy: pathophysiology and novel therapies. Brown Hospital Medicine. 2022;1(3). DOI: 10.56305/001c.37850

26. Murtaza G., Virk H.U.H., Khalid M. et al. Diabetic cardiomyopathy — A comprehensive updated review. Progress in Cardiovascular Diseases. 2019;62(4):315–326. DOI: 10.1016/j.pcad.2019.03.003

27. Yang L., Zhao D., Ren J., Yang J. Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy. Biochimica et Biophysica Acta (BBA) — Molecular Basis of Disease. 2015;1852(2):209–218. DOI: 10.1016/j.bbadis.2014.05.006

28. Nabi N.A., Ebihara A. Diabetes and renin-angiotensin-aldosterone system: pathophysiology and genetics. In book: Renin-Angiotensin Aldosterone System. Samy I. McFarlane Ed. London: IntechOpen, 2021:168. DOI: 10.5772/intechopen.97518

29. Jia G., Habibi J., DeMarco V.G. et al. Endothelial mineralocorticoid receptor deletion prevents diet-induced cardiac diastolic dysfunction in females. Hypertension. 2015;66:1159–1167. DOI: 10.1161/HYPERTENSIONAHA.115.06015

30. Singh R., Kaundal R., Zhao B. et al. Resistin induces cardiac fibroblast-myofi broblast differentiation through JAK/STAT3 and JNK/c-jun signaling. Pharmacological Research. 2021;167:105414. DOI: 10.1016/j.phrs.2020.105414

31. Cheng Y., Wang Y., Yin R. et al. Central role of cardiac fibroblasts in myocardial fi brosis of diabetic cardiomyopathy. Frontiers in Endocrinology. 2023;14:1162754. DOI: 10.3389/fendo.2023.1162754

32. Pan K.-L., Hsu Y.-C., Chang S.-T. et al. The role of cardiac fibrosis in diabetic cardiomyopathy: from pathophysiology to clinical diagnostic tools. International Journal of Molecular Sciences (MDPI). 2023;24:8604. DOI: 10.3390/ijms24108604

33. Ghosh N., Katare R. Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides. Cardiovascular Diabetology. 2018;17(1):43. DOI: 10.1186/s12933-018-0684-1

34. Brasacchio D., Okabe J., Tikellis С. et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes. 2009;58(5):1229–1236. DOI: 10.2337/db08-1666

35. Gaikwad A.B., Sayyed S.G., Lichtnekert J. et al. Renal failure increases cardiac histone h3 acetylation, dimethylation, and phosphorylation and the induction of cardiomyopathy-related genes in type 2 diabetes. The American journal of pathology. 2010;176(3):1079–1083. DOI: 10.2353/ajpath.2010.090528

36. Asrih M., Steff ens S. Emerging role of epigenetics and miRNA in diabetic cardiomyopathy. Cardiovascular Pathology. 2013;22(2):117–125. DOI: 10.1016/j.carpath.2012.07.004

37. Gonzalo-Calvo D., Kenneweg F., Bang C. et al. Circulating long-non coding RNAs as biomarkers of left ventricular diastolic function and remodelling in patients with well-controlled type 2 diabetes. Scientific Reports. 2016;6:37354. DOI: 10.1038/srep37354

38. Pant T., Dhanasekaran A., Fang J. et al. Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy. BMC Cardiovascular Disorders. 2018;18:197. DOI: 10.1186/s12872-018-0939-5.

39. Pordzik J., Jakubik D., Jarosz-Popek J. et al. Significance of circulating microRNAs in diabetes mellitus type 2 and platelet reactivity: bioinformatic analysis and review. Cardiovascular Diabetology. 2019;18(1):113. DOI: 10.1186/s12933-019-0918-x

40. Jakubik D., Fitas A., Eyileten C. et al. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics. Cardiovascular Diabetology. 2021;20:55. DOI: 10.1186/s12933-021-01245-2

41. Zhou Y., Suo W., Zhang X. et al. Targeting epigenetics in diabetic cardiomyopathy: Therapeutic potential of flavonoids. Biomedicine & Pharmacotherapy. 2023;157: 114025. DOI: 10.1016/j.biopha.2022.114025

42. Himangi V., Ravinandan A.P., Hunsur V.N. et al. An insight into the pathogenesis of diabetic cardiomyopathy along with the novel potential therapeutic approaches. Current Diabetes Reviews. 2023;20(1):e020523216416. DOI: 10.2174/1573399819666230502110511

43. Jia G., Whaley-Connell A., Sowers J.R. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61:21–28. DOI: 10.1007/s00125-017-4390-4

44. Pathophysiology of heart disease: a collaborative project of medical students and faculty, 5<sup>th</sup> ed. L.S. Lilly eds. Philadelphia: Lippincott Williams and Wilkins, 2010:461.

45. Voynov V.A. Pathophysiology of the heart and blood vessels. Tutorial. Moscow: Izdatelskiy dom BINOM, 2017:208. (In Russian).

46. Cardiovascular Surgery Lectures, 3<sup>rd</sup> ed., revised and expanded. Bokeriia L.A. eds. Moscow: NCSSH im. A.N. Bakuleva RAMN, 2013:764. (In Russian).

47. Kouchoukos N.T., Blackstone E.H., Hanley F.L., Kirklin J.K. Kirklin/Barratt-boyes cardiac surgery: morphology, diagnostic criteia, natural history, techniques, results, and indications, 4<sup>th</sup> ed, 2-Volume set. Philadelphia: Elsevier Saunders, 2013;1–2:2256.

48. Kurniawaty J., Setianto B.Y., Supomo S. Outcome Comparison Between Insulin-Dependent and Non-Insulin-Dependent Patients after Open Adult Cardiac Surgery. Solo Journal of Anesthesi, Pain and Critical Care (SOJA). 2023;3(1):51–62. DOI: 10.20961/soja.v3i1.66306

49. Cohen O., Dankner R., Chetrit A., et al. Multidisciplinary intervention for control of diabetes in patients undergoing coronary artery bypass graft (CABG). Cardiovascular Surgery. 2016;11:195–200. DOI: 10.1177/096721090301100304

50. Arnaout A., Goge S. Effect of Preadmission Diabetes Intervention (PREHAB) on Postoperative Patient Outcomes in Cardiac Surgery. Diabetes. 2018;67(1):727–P. DOI: 10.2337/db18-727-P

51. Luthra S., Salhiyyah K., Dritsakis G., et al. Diabetes management during cardiac surgery in the UK: A survey. Diabetic Medicine. 2021;38:e14388. DOI: 10.1111/dme.14388

52. Holt R.I.G., Dritsakis G., Barnard-Kelly K.D. et al. The Optimising Cardiac Surgery ouTcOmes in People with diabeteS (OCTOPuS) randomised controlled trial to evaluate an outpatient pre-cardiac surgery diabetes management intervention: a study protocol. BMJ Open. 2021;11(6):e050919. DOI: 10.1136/bmjopen-2021-050919

53. Sadler T.W. Langman’s Medical Embryology, 12<sup>th</sup> ed. Philadelphia: Lippincott Williams & Wilkins, 2011:384.

54. Shevchenko Yu.L. The principle of alternating contraction of cardiomyocytes and their associations. The new concept of the heart physiology. Vestnik NMHC im. N.I. Pirogova. 2022;17(1):4–8. (In Russian). DOI: 10.25881/20728255_2022_17_1_4

55. Abdul-Ogly L.V., Indzhikulyan A.A. Features of vascularization and proliferation of regional sections of the human heart wall in ontogeny. Vestnik problem biologii i meditsiny. 2005;2:104–108. (In Russian)

56. Shiyan D.N., Polikov G.O., Zavgorodniy A.S. Blood supply to human heart valves. VII International Student Electronic Scientifi c Conference, Kharkiv, 2015. (In Russian). [Electronic resource]. URL: http://www.scienceforum.ru/2015/898/13403

57. Fedoniuk L.Ya., Semeniuk T.A., Malik T.A. et al. Blood supply of normal heart valves and diseased heart valves of an infl ammatory and non-inflammatory genesis. Actual issues of morphology. Materials of the International Scientific Conference dedicated to the birth centenary of Professor B.Z. Perlin, Chisinau, 2012:363–367. (In Russian).

58. Mitrofanova L.B., Kovalsky G.B. Morphological characteristics and differential diagnosis of heart valve diseases. Arkhiv patologii. 2007;69(1):24–31. (In Russian)

59. Sinelnikov R.D., Sinelnikov Ya.R. Atlas of human anatomy: tutorial, 2nd ed., stereotypical, 4-Volume set. Volume 3. Moscow: Medicine, 1996:232. (In Russian).

60. Strelnikova E.A., Kalinin R.E., Suchkov I.A. et al. Molecular and cellular aspects of the endothelial–mesenchymal transition in cardiovascular diseases. Molecular Biology. 2023;57:563–571. DOI: 10.1134/S0026893323030111

61. Sielicka A., Sarin E.L., Shi W. et al. Pathological remodeling of mitral valve leafl ets from unphysiological leafl et mechanics after undersized mitral annuloplasty to repair ischemic mitral regurgitation. Journal of the American Heart Association. 2018;7(21):e009777. DOI: 10.1161/JAHA.118.009777

62. Selig J.I., Ouwens D.M., Raschke S. et al. Impact of hyperinsulinemia and hyperglycemia on valvular interstitial cells — A link between aortic heart valve degeneration and type 2 diabetes. Biochimica et Biophysica Acta (BBA) — Molecular Basis of Disease. 2019;1865(9):2526–2537. DOI: 10.1016/j.bbadis.2019.05.019

63. Yoshimatsu Y., Watabe T. Roles of TGF-β signals in endothelial-mesenchymal transition during cardiac fi brosis. International Journal of Inflammation. 2011;2011:724080. DOI: 10.4061/2011/724080

64. Lin H., Guan L., Meng L. et al. SGLT1 knockdown attenuates cardiac fibroblast activation in diabetic cardiac fi brosis. Frontiers in Pharmacology. 2021;12:700366. DOI: 10.3389/fphar.2021.700366

65. Larsson S.C., Wallin A., Håkansson N. et al. Type 1 and type 2 diabetes mellitus and incidence of seven cardiovascular diseases. International Journal of Cardiology. 2018;262:66–70. DOI: 10.1016/j.ijcard.2018.03.099

66. Kovacic J.C., Dimmeler S, Harvey R.P. et al. Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review. Journal of the American College of Cardiology (JACC). 2019;73(2):190–209. DOI: 10.1016/j.jacc.2018.09.089


Review

For citations:


Krylov V.V., Ragimov M.R., Misnikova I.V. Pathophysiological aspects of morphological changes in the structure of atrioventricular valves leafl ets in diabetes mellitus. Clinical Medicine (Russian Journal). 2024;102(2):109-117. (In Russ.) https://doi.org/10.30629/0023-2149-2024-102-2-109-117

Views: 327


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)