Study of the initial vasculotoxic risk in patients with lymphoproliferative diseases before the start of polychemotherapy
https://doi.org/10.30629/0023-2149-2024-102-1-48-56
Abstract
Research objective. To evaluate the levels of CRP, cardio-specific markers, lipids, structural-functional (SF) state of vessels, and their interrelations in patients with lymphoproliterative diseases (LPD) before polychemotherapy (PCT).
Materials and methods. The study included patients with newly diagnosed LPD (n = 30), including 16 men (53.3%) and 14 women (46.7%). All patients were divided into two groups: group 1 (n = 15) — patients with low/intermediate cardiovascular toxicity (CVT) risk; group 2 (n = 15) — patients with high/very high CVT risk. CVT risk stratification was performed with the use of specialized scales according to the current European clinical guidelines for cardio-oncology 2022. All patients included in the study underwent standard laboratory and instrumental examinations. Specific laboratory research involved assessing the levels of C-reactive protein (CRP), troponin I (TnI), N-terminal pro-brain natriuretic peptide (NT-proBNP), and lipid profile. The SF state of vessels was evaluated non-invasively using photoplethysmography (PPG) (Angioscan-01 device, Russia) and computerized videocapillaroscopy (CVC) of the periungual area (Capillaroscan-01 device, Russia).
Results. According to the results of PPG and CVC, the occlusion index (OI) in group 2 was significantly lower and amounted to 1.2 [1; 1.3] compared to 1.7 [1.45; 2.1] in group 1 (p < 0.001); capillary density after reactive hyperemia (CDRH) was also significantly lower in group 2 compared to group 1 — 43 [35.5; 45] and 54 [43; 58] cap/mm², respectively (p = 0.033). According to the obtained results, there were no statistically significant diff erences in the levels of CRP, TnI, and NT-proBNP between patients in both groups; the indicators were within the reference values. A moderate inverse statistically signifi cant correlation was found between the level of CRP and the percentage of perfused capillaries (PPC) (rs = –0.545; p = 0.02) and the percentage of capillary recovery (PCR) (r = –0.446; p = 0.013).
Conclusion. Patients with LPD have endothelial dysfunction before PCT, primarily due to the presence of cardiovascular risk factors (age, body mass index), and concomitant cardiovascular diseases. At the same time, the SF state of vessels initially does not depend on the stage and course of LPD, lipid levels, and TnI.
About the Authors
R. R. KarimovRussian Federation
Ramzullo R. Karimov
Moscow
E. Yu. Salakheeva
Russian Federation
Ekaterina Yu. Salakheeva
Moscow
D. A. Budanova
Russian Federation
Darya A. Budanova
Moscow
O. N. Antyufeeva
Russian Federation
Olga N. Antyufeeva
Moscow
O. V. Bochkarnikova
Russian Federation
Olga V. Bochkarnikova
Moscow
E. V. Privalova
Russian Federation
Elena V. Privalova
Moscow
Yu. N. Belenkov
Russian Federation
Yuri N. Belenkov
Moscow
I. S. Ilgisonis
Russian Federation
Irina S. Ilgisonis
Moscow
References
1. Ferlay J., Steliarova-Foucher. E, Lortet-Tieulent J., Rosso S., Coebergh J.W., Comber H., Forman D., Bray F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur. J. Cancer. 2013;49(6):1374–403. DOI: 10.1016/j.ejca.2012.12.027
2. Terwoord J.D., Beyer A.M., Gutterman D.D. Endothelial dysfunction as a complication of anti-cancer therapy. Pharmacol. Ther. 2022;237:108116. DOI: 10.1016/j.pharmthera.2022.108116
3. Herrmann J., Lenihan D., Armenian S., Barac A., Blaes A., Cardinale D., Carver J., Dent S., Ky B., Lyon A.R., López-Fernández T., Fradley M.G., Ganatra S., Curigliano G., Mitchell J.D., Minotti G., Lang N.N., Liu J.E., Neilan T.G., Nohria A., O’Quinn R., Pusic I., Porter C., Reynolds K.L., Ruddy K.J., Thavendiranathan P., Valent P. Defining cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS) consensus statement. Eur. Heart J. 2022;43(4):280–299. DOI: 10.1093/eurheartj/ehab674
4. Chong A.Y., Freestone B., Patel J., Lim H.S., Hughes E., Blann A.D., Lip G.Y. Endothelial activation, dysfunction, and damage in congestive heart failure and the relation to brain natriuretic peptide and outcomes. Am. J. Cardiol. 2006;97(5):671–5. DOI: 10.1016/j.amjcard.2005.09.113
5. Laurent S., Cockcroft J., Van Bortel L., Boutouyrie P., Giannattasio C., Hayoz D., Pannier B., Vlachopoulos C., Wilkinson I., Struijker-Boudier H. European Network for Non-invasive Investigation of Large Arteries. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur. Heart J. 2006;27(21):2588–605. DOI: 10.1093/eurheartj/ehl254
6. Hadi H.A., Carr C.S. Al Suwaidi J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc. Health Risk Manag. 2005;1(3):183–98. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1993955
7. Budanova D.A., Antyufeeva O.N., Ilgisonis I.S., Sokolova I.Ya., Belenkov Yu.N., Ershov V.I., Bochkarnikova O.V., Gadaev I.Yu. Assessment of the Dynamics of Markers for Direct Damage and Myocardial Dysfunction, Indicators of Endothelial Dysfunction in Patients with Indolent Lymphomas Before and After Anticancer Therapy. Kardiologiia. 2020;60(11):49–56. (In Russian). DOI: 10.18087/cardio.2020.11.n1390
8. Salven P., Teerenhovi L., Joensuu H. A high pretreatment serum vascular endothelial growth factor concentration is associated with poor outcome in non-Hodgkin’s lymphoma. Blood. 1997;90(8):3167–72. DOI: 10.1182/blood.V90.8.3167
9. Shah N., Cabanillas F., McIntyre B., Feng L., McLaughlin P., Rodriguez M.A., Romaguera J., Younes A., Hagemeister F.B., Kwak L., Fayad L. Prognostic value of serum CD44, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 levels in patients with indolent non-Hodgkin lymphomas. Leuk. Lymphoma. 2012;53(1):50–6. DOI: 10.3109/10428194.2011.616611
10. Tocchetti C.G., Ameri P., de Boer R.A., D’Alessandra Y., Russo M., Sorriento D., Ciccarelli M., Kiss B., Bertrand L., Dawson D., Falcao-Pires I., Giacca M., Hamdani N., Linke W.A., Mayr M., van der Velden J., Zacchigna S., Ghigo A., Hirsch E., Lyon A.R., Görbe A., Ferdinandy P., Madonna R., Heymans S., Thum T. Cardiac dysfunction in cancer patients: beyond direct cardiomyocyte damage of anticancer drugs: novel cardio-oncology insights from the joint 2019 meeting of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc. Res. 2020;116(11):1820–1834. DOI: 10.1093/cvr/cvaa222
11. Tousoulis D., Papageorgiou N., Latsios G., Siasos G., Antoniades C., Stefanadis C. C-reactive protein and endothelial dysfunction: gazing at the coronaries. Int. J. Cardiol. 2011;152(1):1–3. DOI: 10.1016/j.ijcard.2011.07.067
12. Chong A.Y., Blann A.D., Patel J., Freestone B., Hughes E., Lip G.Y. Endothelial dysfunction and damage in congestive heart failure: relation of flow-mediated dilation to circulating endothelial cells, plasma indexes of endothelial damage, and brain natriuretic peptide. Circulation. 2004;110(13):1794–8. DOI: 10.1161/01.CIR.0000143073.60937.50
13. El Sabbagh A., Prasad M., Zack C.J., Widmer R.J., Karon B.S., Lerman A., Jaffe A.S. High-Sensitivity Troponin in Patients With Coronary Artery Endothelial Dysfunction. J. Invasive Cardiol. 2018;30(11):406–410
14. Higashi Y. Endothelial Function in Dyslipidemia: Roles of LDL-Cholesterol, HDL-Cholesterol and Triglycerides. Cells. 2023;12(9):1293. DOI: 10.3390/cells12091293
15. Belenkov Yu.N., Privalova E.V., Kozhevnikova M.V., Kirichenko Y.Y. Vascular Complications of Cancer Chemotherapy. Kardiologiia. 2018;58(S9):4–9. (In Russian). DOI: 10.18087/cardio.2565
16. Lyon A.R., López-Fernández T., Couch L.S., Asteggiano R., Aznar M.C., Bergler-Klein J. et al. ESC Scientific Document Group. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022;43(41):4229–4361. DOI: 10.1093/eurheartj/ehac244
17. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Russian Journal of Cardiology. 2022;27(7):5155. (In Russian). DOI: 10.15829/1560-4071-2022-5155
18. Kirichenko Yu.Yu., Ilgisonis I.S., Ivanova T.V., Zolotukhina A.S., Khabarova N.V., Privalova E.V., Belenkov Yu.N. Cardiovascular toxicity of antitumor therapy: effect on myocardial and vascular remodeling. Cardiovascular Therapy and Prevention. 2021;20(7):2923. (In Russian). DOI: 10.15829/1728-8800-2021-2923
19. Celermajer D.S., Sorensen K.E., Spiegelhalter D.J., Georgakopoulos D., Robinson J., Deanfield J.E. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J. Am. Coll. Cardiol. 1994;24(2):471–6. DOI: 10.1016/0735-1097(94)90305-0
20. Hamdy O., Ledbury S., Mullooly C., Jarema C., Porter S., Ovalle K., Moussa A., Caselli A., Caballero A.E., Economides P.A., Veves A., Horton E.S. Lifestyle modification improves endothelial function in obese subjects with the insulin resistance syndrome. Diabetes Care. 2003;26(7):2119–25. DOI: 10.2337/diacare.26.7.2119
21. Brainin P., Frestad D., Prescott E. The prognostic value of coronary endothelial and microvascular dysfunction in subjects with normal or non-obstructive coronary artery disease: A systematic review and meta-analysis. Int. J. Cardiol. 2018;254:1–9. DOI: 10.1016/j.ijcard.2017.10.052
22. Wong B.W., Meredith A., Lin D., McManus B.M. The biological role of inflammation in atherosclerosis. Can. J. Cardiol. 2012;28(6):631–41. DOI: 10.1016/j.cjca.2012.06.023
23. Statsenko M.E., Derevyanchenko M.V. The role of systemic inflammation in decrease of elasticity of magistral arteries and in progression of endothelial dysfunction in patients with systemic hypertension, obesity and type 2 diabetes. Russian Journal of Cardiology. 2018;(4):32–36. (In Russian). DOI: 10.15829/1560-4071-2018-4-32-36
24. Salakheeva E.Yu., Shchendrygina A.A., Sokolova I.Ya., Zhbanov K.A., Tsatsurova S.A., Kanevskiy N.I. et al. Correlation between the level of C-reactive protein and the parameters of the functional state of the left atrium with lymphoproliferative diseases against the background of chemotherapy. Klinicheskaya meditsina. 2023;101(1):55–62. (In Russian). DOI: 10.30629/0023-2149-2023-101-1-55-62
25. Steinberg H.O., Bayazeed B., Hook G., Johnson A., Cronin J., Baron A.D. Endothelial dysfunction is associated with cholesterol levels in the high normal range in humans. Circulation. 1997;96:3287–3293. DOI: 10.1161/01.cir.96.10.3287
26. Mutlu U., Ikram M.A., Hofman A., de Jong P.T., Klaver C.C., Ikram M.K. N-terminal Pro-B-type natriuretic peptide is related to retinal microvascular damage: The Rotterdam Study. Arterioscler. Thromb. Vasc. Biol. 2016;36(8):1698–702. DOI: 10.1161/ATVBAHA.116.307545
Review
For citations:
Karimov R.R., Salakheeva E.Yu., Budanova D.A., Antyufeeva O.N., Bochkarnikova O.V., Privalova E.V., Belenkov Yu.N., Ilgisonis I.S. Study of the initial vasculotoxic risk in patients with lymphoproliferative diseases before the start of polychemotherapy. Clinical Medicine (Russian Journal). 2024;102(1):48-56. (In Russ.) https://doi.org/10.30629/0023-2149-2024-102-1-48-56