Наночастицы для адресной доставки лекарственных средств в современной кардиологии
https://doi.org/10.30629/0023-2149-2023-101-9-10-454-466
Аннотация
Инфаркт миокарда (ИМ) является ведущей причиной смерти во всем мире. Потеря кардиомиоцитов в результате повреждений, таких как ИМ, часто приводит к фиброзному рубцеванию и угнетению сердечной функции. Использование систем адресной доставки лекарств всегда необходимо, поскольку они обеспечивают уникальные преимущества для повышения эффективности и снижения нежелательных эффектов. Наночастицы (НЧ) являются наиболее распространенными средствами доставки терапевтических агентов к ткани-мишени. НЧ для доставки лекарственных средств могут состоять из различных наноматериалов и структур, включая липиды, полимеры, дендримеры, углеродные нанотрубки и металлические наночастицы. Нами были рассмотрены подходы к кардиоспецифической доставке терапевтических средств на основе НЧ для лечения ишемической болезни сердца в доклинических и клинических исследованиях. Доставка лекарственных веществ на основе НЧ обладает потенциалом для специфического нацеливания на ткани и клетки, а также для пролонгированного высвобождения множества терапевтических агентов. Однако применение НЧ в терапии сердечно-сосудистых заболеваний относительно ограниченно по сравнению с другими областями, такими как онкология и неврология. Одним из основных препятствий является отсутствие специфичности в современных системах нацеливания на сердце. Будущие исследования необходимы для выявления специфических лигандов/рецепторов в кардиомиоцитах и разработки новых НЧ с высокой аффинностью и специфичностью.
Об авторах
В. А. КиденкоРоссия
Киденко Виктория Александровна — канд. мед. наук, ассистент кафедры внутренних болезней № 3
344022, Ростов-на-Дону
М. М. Метова
Россия
Метова Мариетта Муратовна — ординатор кафедры внутренних болезней № 3
344022, Ростов-на-Дону
Е. Ю. Габриелян
Россия
Габриелян Елизавета Юрьевна — ординатор кафедры кардиологии, ревматологии и функциональной диагностики
344022, Ростов-на-Дону
Ю. А. Трусов
Россия
Трусов Юрий Александрович — врач-кардиолог, ассистент
443099, Самара
А. Д. Мелихова
Россия
Мелихова Анастасия Дмитриевна — аспирант кафедры внутренних болезней № 3
344022, Ростов-на-Дону
Е. П. Муслимова
Россия
Муслимова Елена Павловна — ординатор
Уфа
Я. В. Седьмова
Россия
Седьмова Яна Вячеславовна — студентка 6-го курса
443099, Самара
К. Р. Хабибуллина
Россия
Хабибуллина Камила Рустемовна — аспирант кафедры госпитальной терапии №1
Уфа
Е. В. Маликова
Россия
Маликова Елизавета Владимировна — ординатор кафедры кардиологии, ревматологии и функциональной диагностики
344022, Ростов-на-Дону
Л. А. Валиуллина
Россия
Валиуллина Лилия Альбертовна — студентка
Уфа
Д. Д. Багаутдинова
Россия
Багаутдинова Диана Дамировна — студентка 6-го курса
Уфа
А. В. Петракова
Россия
Петракова Анна Вадимовна — аспирант
344022, Ростов-на-Дону
К. С. Терехина
Россия
Терехина Ксения Сергеевна — доцент кафедры госпитальной терапии №2
Уфа
Список литературы
1. Li J., Hu S., Zhu D., Huang K., Mei X., López de Juan Abad B., Cheng K. All roads lead to rome (the heart): cell retention and outcomes from various delivery routes of cell therapy products to the heart. J. Am. Heart Assoc. 2021;10(8):e020402. DOI: 10.1161/JAHA.120.020402
2. Sahoo S., Kariya T., Ishikawa K. Targeted delivery of therapeutic agents to the heart. Nat Rev. Cardiol. 2021;18(6):389–399. DOI: 10.1038/s41569–020–00499–9
3. Razavi E., Ramezani A., Kazemi A., Attar A. Effect of treatment with colchicine after acute coronary syndrome on major cardiovascular events: a systematic review and meta-analysis of clinical trials. Cardiovasc. Ther. 2022; 2022:8317011. DOI: 10.1155/2022/8317011
4. Wang D., Liu B., Xiong T., Yu W., Yang H., Wang J., Jing X., She Q. Transcription factor Foxp1 stimulates angiogenesis in adult rats after myocardial infarction. Cell Death. Discov. 2022;10;8(1):381. DOI: 10.1038/s41420–022–01180–5
5. Monahan D.S., Almas T., Wyile R., Cheema F.H., Duffy G.P., Hameed A. Towards the use of localised delivery strategies to counteract cancer therapy-induced cardiotoxicities. Drug. Deliv. Transl. Res. 2021;11(5):1924–1942. DOI: 10.1007/s13346–020–00885–3
6. Monahan D.S., Flaherty E., Hameed A., Duffy G.P. Resveratrol signifi cantly improves cell survival in comparison to dexrazoxane and carvedilol in a h9c2 model of doxorubicin induced cardiotoxicity. Biomed. Pharmacother. 2021;140:111702. DOI: 10.1016/j.biopha.2021.111702
7. Gastl M., Sürder D., Corti R., Faruque Osmany D.M.M., Gotschy A., von Spizcak J., Sokolska J., Metzen D., Alkadhi H., Ruschitzka F., Kozerke S., Manka R. Effect of intracoronary bone marrow-derived mononuclear cell injection early and late after myocardial infarction on CMR-derived myocardial strain. Int. J. Cardiol. 2020;310:108– 115. DOI: 10.1016/j.ijcard.2020.01.025
8. Lamirault G., de Bock E., Sébille V., Delasalle B., Roncalli J., Susen S., Piot C., Trochu J.N., Teiger E., Neuder Y., Le Tourneau T., Manrique A., Hardouin J.B., Lemarchand P. Sustained quality of life improvement after intracoronary injection of autologous bone marrow cells in the setting of acute myocardial infarction: results from the BONAMI trial. Qual. Life Res. 2017;26(1):121–125. DOI: 10.1007/s11136–016–1366–7
9. Zhang J., Wu Z., Fan Z., Qin Z., Wang Y., Chen J., Wu M., Chen Y., Wu C., Wang J. Pericardial application as a new route for implanting stem-cell cardiospheres to treat myocardial infarction. J. Physiol. 2018;596(11):2037–2054. DOI: 10.1113/JP275548
10. Dergilev K.V., Tsokolayeva Z.I., Beloglazova I.B., Ratner E.I., Parfyonova E.V. Epicardial transplantation of cardiac progenitor cells based cells sheets is more promising method for stimulation of myocardial regeneration, than conventional cell injections. Kardiologiia. 2019;59(5):53–60. DOI: h10.18087/cardio.2019.5.2597
11. Lin X., Liu Y., Bai A., Cai H., Bai Y., Jiang W., Yang H., Wang X., Yang L., Sun N., Gao H. A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nat. Biomed. Eng. 2019;3(8):632– 643. DOI: 10.1038/s41551–019–0380–9
12. Mathieu E., Lamirault G., Toquet C., Lhommet P., Rederstorff E., Sourice S., Biteau K., Hulin P., Forest V., Weiss P., Guicheux J., Lemarchand P. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. PLoS One. 2012;7(12):e51991. DOI: 10.1371/journal.pone.0051991
13. Zeng X., Zou L., Levine R.A., Guerrero J.L., Handschumacher M.D., Sullivan S.M., Braithwaite G.J.C., Stone J.R., Solis J., Muratoglu O.K., Vlahakes G.J., Hung J. Effi cacy of polymer injection for ischemic mitral regurgitation: persistent reduction of mitral regurgitation and attenuation of left ventricular remodeling. JACC Cardiovasc. Interv. 2015;8(2):355–363. DOI: 10.1016/j.jcin.2014.09.016
14. Mihic A., Cui Z., Wu J., Vlacic G., Miyagi Y., Li S.H., Lu S., Sung H.W., Weisel R.D., Li R.K. A Conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct. Circulation. 2015;132(8):772– 84. DOI: 10.1161/CIRCULATIONAHA.114.014937
15. Fan C., Joshi J., Li F., Xu B., Khan M., Yang J., Zhu W. Nanoparticle-mediated drug delivery for treatment of ischemic heart disease. Front. Bioeng. Biotechnol. 2020;8:687. DOI: 10.3389/fbioe.2020.00687
16. Yang F., Xue J., Wang G., Diao Q. Nanoparticle-based drug delivery systems for the treatment of cardiovascular diseases. Front. Pharmacol. 2022; 13:999404. DOI: 10.3389/fphar.2022.999404
17. Li C., Naveed M., Dar K., Liu Z., Baig M.M.F.A., Lv R., Saeed M., Dingding C., Feng Y., Xiaohui Z. Therapeutic advances in cardiac targeted drug delivery: from theory to practice. J. Drug. Target. 2021; 29(3):235–248. DOI: 10.1080/1061186X.2020.1818761
18. Li Z., Hu S., Cheng K. Platelets and their biomimetics for regenerative medicine and cancer therapies. J. Mater. Chem B. 2018;6(45):7354– 7365. DOI: 10.1039/C8TB02301H
19. Su T., Huang K., Ma H., Liang H., Dinh P.U., Chen J., Shen D., Allen T.A., Qiao L., Li Z., Hu S., Cores J., Frame B.N., Young A.T., Yin Q., Liu J., Qian L., Caranasos T.G., Brudno Y., Ligler F.S., Cheng K. Platelet-inspired nanocells for targeted heart repair after ischemia/reperfusion injury. Adv. Funct. Mater. 2019;29(4):1803567. DOI: 10.1002/adfm.201803567
20. Cannatà A., Ali H., Sinagra G., Giacca M. Gene therapy for the heart lessons learned and future perspectives. Circ. Res. 2020;126(10):1394– 1414. DOI: 10.1161/CIRCRESAHA.120.315855
21. O'Dwyer J., Murphy R., González-Vázquez A., Kovarova L., Pravda M., Velebny V., Heise A., Duffy G.P., Cryan S.A. Translational studies on the potential of a VEGF nanoparticle-loaded hyaluronic acid hydrogel. Pharmaceutics. 2021;13(6):779. DOI: 10.3390/pharmaceutics13060779
22. Pala R., Pattnaik S., Busi S., Nauli S .M. Nanomaterials as Novel Cardiovascular theranostics. Pharmaceutics. 2021;13(3):348. DOI: 10.3390/pharmaceutics13030348
23. Wang D.K., Rahimi M., Filgueira C.S. Nanotechnology applications for cardiovascular disease treatment: Current and future perspectives. Nanomedicine. 2021;34:102387. DOI: 10.1016/j.nano.2021.102387
24. Joshi J., Kothapalli C.R. Nanofi bers based tissue engineering and drug delivery approaches for myocardial regeneration. Curr. Pharm. Des. 2015;21(15):2006–20. DOI: 10.2174/1381612821666150302153138
25. Soares S., Sousa J., Pais A., Vitorino C. Nanomedicine: principles, properties and regulatory issues. Front. Chem. 2018;6:360. DOI https://doi.org/10.3389/fchem.2018.00360
26. Hoshyar N., Gray S., Han H., Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond). 2016;11(6):673–92. DOI: 10.2217/nnm.16.5
27. Boltnarova B., Kubackova J., Skoda J., Stefela A., Smekalova M., Svacinova P., Pavkova I., Dittrich M., Scherman D., Zbytovska J., Pavek P., Holas O. PLGA Based Nanospheres as a Potent Macrophage-Specifi c Drug Delivery System. Nanomaterials (Basel). 2021;11(3):749. DOI: 10.3390/nano11030749
28. Lloris-Garcerá P., Klinter S., Chen L., Skynner M.J., Löving R., Frauenfeld J. DirectMX — one-step reconstitution of membrane proteins from crude cell membranes into salipro nanoparticles. Front. Bioeng. Biotechnol. 2020;8:215. DOI: 10.3389/fbioe.2020.00215
29. Medina–Cruz D., Mostafavi E., Vernet-Crua A., Cheng J., Shah V., Cholula-Diaz J.L., Guisbiers G., Tao J., García-Martín J.M., Webster T.J. Green nanotechnology-based drug delivery systems for osteogenic disorders. Expert Opin. Drug. Deliv. 2020;17(3):341–356. DOI: 10.1080/17425247.2020.1727441
30. Aziz A., Rehman U., Sheikh A., Abourehab M.A.S., Kesharwani P. Lipid–based nanocarrier mediated CRISPR/Cas9 delivery for cancer therapy. J. Biomater. Sci. Polym Ed. 2023;34(3):398–418. DOI: 10.1080/09205063.2022.2121592
31. Yu C.H., Betrehem U.M., Ali N., Khan A., Ali F., Nawaz S., Sajid M., Yang Y., Chen T., Bilal M. Design strategies., surface functionalization., and environmental remediation potentialities of polymer-functionalized nanocomposites. Chemosphere. 2022;306:135656. DOI: 10.1016/j.chemosphere.2022.135656
32. Radhakrishnan D., Mohanan S., Choi G., Choy J.H., Tiburcius S., Trinh H.T., Bolan S., Verrills N., Tanwar P., Karakoti A., Vinu A. The emergence of nanoporous materials in lung cancer therapy. Sci. Technol. Adv. Mater. 2022;23(1):225–274. DOI: 10.1080/14686996.2022.2052181
33. Katsuki S., Matoba T., Koga J.I., Nakano K., Egashira K. Anti-in- flammatory nanomedicine for cardiovascular disease. Front. Cardiovasc. Med. 2017;4:87. DOI: 10.3389/fcvm.2017.00087
34. Vinhas R., Mendes R., Fernandes A.R., Baptista P.V. Nanoparticles-Emerging Potential for Managing Leukemia and Lymphoma. Front. Bioeng Biotechnol. 2017;5:79. DOI: 10.3389/fbioe.2017.00079
35. Pascual-Gil S., Simón -Yarza T., Garbayo E., Prósper F., BlancoPrieto M.J. Cytokine -loaded PLGA and PEG-PLGA microparticles showed similar heart regeneration in a rat myocardial infarction model. Int. J. Pharm. 2017;523(2):531–533. DOI: 10.1016/j.ijpharm.2016.11.022
36. Raphey V.R., Henna T.K., Nivitha K.P., Mufeedha P., Sabu C., Pramod K. Advanced biomedical applications of carbon nanotube. Mater Sci. Eng. C Mater Biol. Appl. 2019;100:616–630. DOI: 10.1016/j.msec.2019.03.043
37. Noon W.H., Kong Y., Ma J. Molecular dynamics analysis of a buckyball–antibody complex. Proc. Natl. Acad. Sci. U S A. 2002; 99(2):6466–70. DOI: 10.1073/pnas.022532599
38. Lai C., Lia L., Luoa B., Shena J., Shaoa J. Current advances and prospects in carbon nanomaterials-based drug delivery systems for cancer therapy. Curr. Med. Chem. 2022. DOI: 10.2174/0929867329666220821195353
39. Yañez-Aulestia A., Gupta N.K., Hernández M., Osorio-Toribio G., Sánchez-González E., Guzmán-Vargas A., Rivera J.L., Ibarra I.A., Lima E. Gold nanoparticles: current and upcoming biomedical applications in sensing, drug and gene delivery. Chem. Commun. (Camb). 2022;58(78):10886–10895. DOI: 10.1039/d2cc04826d
40. Sakthi Devi R., Girigoswami A., Siddharth M., Girigoswami K. Applications of Gold and Silver Nanoparticles in Theranostics. Appl. Biochem. Biotechnol. 2022;194(9):4187–4219. DOI: 10.1007/s12010-022-03963-z
41. Ahmad F., Salem-Bekhit M.M., Khan F., Alshehri S., Khan A., Ghoneim M.M., Wu H.F., Taha E.I., Elbagory I. Unique properties of surface-functionalized nanoparticles for bio-application: functionalization mechanisms and importance in application. Nanomaterials (Basel). 2022;12(8):1333. DOI: 10.3390/nano12081333
42. Shepherd S.J., Issadore D., Mitchell M.J. Microfl uidic formulation of nanoparticles for biomedical applications. Biomaterials. 2021;274:120826. DOI: 10.1016/j.biomaterials.2021.120826
43. Morgan M.T., Carnahan M.A., Finkelstein S., Prata C.A., Degoricija L., Lee S.J., Grinstaff M.W. Dendritic supramolecular assemblies for drug delivery. Chem. Commun. (Camb). 2005;(34):4309– 11. DOI: 10.1039/b502411k
44. Namdari M., Cheraghi M., Negahdari B., Eatemadi A., Daraee H. Recent advances in magnetoliposome for heart drug delivery. Artif. Cells Nanomed. Biotechnol. 2017;45(6):1–7. DOI: 10.1080/21691401.2017.1299159
45. Somasuntharam I., Yehl K., Carroll S.L., Maxwell J.T., Martinez M.D., Che P.L., Brown M.E., Salaita K., Davis M.E. Knockdown of TNF-α by DNAzyme gold nanoparticles as an anti-infl ammatory therapy for myocardial infarction. Biomaterials. 2016;83:12–22. DOI: 10.1016/j.biomaterials.2015.12.022
46. Zhu K., Wu M., Lai H., Guo C., Li J., Wang Y., Chen Y., Wang C., Shi J. Nanoparticle-enhanced generation of gene-transfected mesenchymal stem cells for in vivo cardiac repair. Biomaterials. 2016;74:188–99. DOI: 10.1016/j.biomaterials.2015.10.010
47. Takakura Y., Takahashi Y. Strategies for persistent retention of macromolecules and nanoparticles in the blood circulation. J. Control. Release. 2022;350:486–493. DOI: 10.1016/j.jconrel.2022.05.063
48. Evers M.J.W., Du W., Yang Q., Kooijmans S.A.A., Vink A., van Steenbergen M., Vader P., de Jager S.C.A., Fuchs SA., Mastrobattista E., Sluijter J.P.G., Lei Z., Schiffelers R. Delivery of modifi ed mRNA to damaged myocardium by systemic administration of lipid nanoparticles. J. Control. Release. 2022;343:207–216. DOI: 10.1016/j.jconrel.2022.01.027
49. Asanuma H., Sanada S., Yoshitomi T., Sasaki H., Takahama H., Ihara M., Takahama H., Shinozaki Y., Mori H., Asakura M., Nakano A., Sugimachi M., Asano Y., Minamino T., Takashima S., Nagasaki Y., Kitakaze M. Novel synthesized radical-containing nanoparticles limit infarct size following ischemia and reperfusion in canine hearts. Cardiovasc. Drugs Ther. 2017;31(5–6):501–510. DOI: 10.1007/s10557–017–6758–6
50. Allijn I.E., Czarny B.M.S., Wang X., Chong S.Y., Weiler M., da Silva A.E., Metselaar J.M., Lam C.S.P., Pastorin G., de Kleijn D.P.V., Storm G., Wang J.W., Schiffelers R.M. Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction. J. Control Release. 2017;247:127–133. DOI: 10.1016/j.jconrel.2016.12.042
51. Paulis L.E., Geelen T., Kuhlmann M.T., Coolen B.F., Schäfers M., Nicolay K., Strijkers G.J. Distribution of lipid-based nanoparticles to infarcted myocardium with potential application for MRI-monitored drug delivery. J. Control. Release. 2012;162(2):276–85. DOI: 10.1016/j.jconrel.2012.06.035
52. Díez-Pascual A.M. Surface engineering of nanomaterials with polymers, biomolecules, and small ligands for nanomedicine. Materials (Basel). 2022;15(9):3251. DOI: 10.3390/ma15093251
53. Anselmo A.C., Mitragotri S. Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles. J. Control. Release. 2014;190:531–41. DOI: 10.1016/j.jconrel.2014.03.050
54. Ferreira M.P., Ranjan S., Correia A.M., Mäkilä E.M., Kinnunen S.M., Zhang H., Shahbazi M.A., Almeida P.V., Salonen J.J., Ruskoaho H.J., Airaksinen A.J., Hirvonen J.T., Santos H.A. In vitro and in vivo assessment of heart-homing porous silicon nanoparticles. Biomaterials. 2016;94:93–104. DOI: 10.1016/j.biomaterials.2016.03.046
55. Jaiswal S., Rajnikanth P.S., Thakur S., Deepak P., Anand S. A Review on novel ligand targeted delivery for cardiovascular disorder. Curr. Drug. Deliv. 2021;18(8):1094–1104. DOI: 10.2174/1567201818666210301095046
56. Ruckenstein E., Li Z.F. Surface modifi cation and functionalization through the self-assembled monolayer and graft polymerization. Adv. Colloid. Interface Sci. 2005;113(1):43–63. DOI: 10.1016/j.cis.2004.07.009
57. Torchilin V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug. Discov. 2014;13(11):813–27. DOI: 10.1038/nrd4333
58. Verma V.K., Kamaraju S.R., Kancherla R., Kona L.K., Beevi S.S., Debnath T., Usha S.P., Vadapalli R., Arbab A.S., Chelluri L.K. Fluorescent magnetic iron oxide nanoparticles for cardiac precursor cell selection from stromal vascular fraction and optimization for magnetic resonance imaging. Int. J. Nanomedicine. 2015;10:711–26. DOI: 10.2147/IJN.S75445
59. Peet C., Ivetic A., Bromage D.I., Shah A.M. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc. Res. 2020;116(6):1101–1112. DOI: 10.1093/cvr/cvz336
60. Fan C., Oduk Y., Zhao M., Lou X., Tang Y., Pretorius D., Valarmathi M.T., Walcott G.P., Yang J., Menasche P., Krishnamurthy P., Zhu W., Zhang J. Myocardial protection by nanomaterials formulated with CHIR99021 and FGF1. JCI Insight. 2020;5(12):e132796. DOI: 10.1172/jci.insight.132796
61. Du J., Zheng L., Gao P., Yang H., Yang W.J., Guo F., Liang R., Feng M., Wang Z., Zhang Z., Bai L., Bu Y., Xing S., Zheng W., Wang X., Quan L., Hu X., Wu H., Chen Z., Chen L., Wei K., Zhang Z., Zhu X., Zhang X., Tu Q., Zhao S.M., Lei X., Xiong J.W. A small-molecule cocktail promotes mammalian cardiomyocyte proliferation and heart regeneration. Cell. Stem. Cell. 2022;29(4):545– 558.e13. DOI: 10.1016/j.stem.2022.03.009
62. Molavi B., Chen J., Mehta J.L. Cardioprotective effects of rosiglitazone are associated with selective overexpression of type 2 angiotensin receptors and inhibition of p42/44 MAPK. Am. J. Physiol. Heart Circ. Physiol. 2006;291(2):H687–93. DOI: 10.1152/ajpheart.00926.2005
63. Yang B.C., Phillips M.I., Ambuehl P.E., Shen L.P., Mehta P., Mehta J.L. Increase in angiotensin II type 1 receptor expression immediately after ischemia-reperfusion in isolated rat hearts. Circulation. 1997;96(3):922–6. DOI: 10.1161/01.cir.96.3.922
64. Dvir T., Bauer M., Schroeder A., Tsui J.H., Anderson D.G., Langer R., Liao R., Kohane D.S. Nanoparticles targeting the infarcted heart. Nano Lett. 2011; 1(10):4411–4. DOI: 10.1021/nl2025882
65. Xue X., Shi X., Dong H., You S., Cao H., Wang K., Wen Y., Shi D., He B., Li Y. Delivery of microRNA-1 inhibitor by dendrimer-based nanovector: An early targeting therapy for myocardial infarction in mice. Nanomedicine. 2018;14(2):619–631. DOI: 10.1016/j.nano.2017.12.004
66. Gasc J.M., Shanmugam S., Sibony M., Corvol P. Tissue-specifi c expression of type 1 angiotensin II receptor subtypes. An in situ hybridization study. Hypertension. 1994;24(5):531–7. DOI: 10.1161/01.hyp.24.5.531
67. McGuire M.J., Samli K.N., Johnston S.A., Brown K.C. In vitro selection of a peptide with high selectivity for cardiomyocytes in vivo. J. Mol. Biol. 2004;342(1):171–82. DOI: 10.1016/j.jmb.2004.06.029
68. Ikuta T., Sogawa N., Ariga H., Ikemura T., Matsumoto K. Structural analysis of mouse tenascin-X: evolutionary aspects of reduplication of FNIII repeats in the tenascin gene family. Gene. 1998;217(1–2):1– 13. DOI: 10.1016/s0378-1119(98)00355-2
69. Hu B., Boakye-Yiadom KO., Yu W., Yuan Z.W., Ho W., Xu X., Zhang X.Q. Nanomedicine Approaches for Advanced Diagnosis and Treatment of therosclerosis and Related Ischemic Diseases. Adv. Healthc Mater. 2020;9(16):e2000336. DOI: 10.1002/adhm.202000336
70. Li R., He Y., Zhang S., Qin J., Wang J. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm. Sin. B. 2018;8(1):14–22. DOI: 10.1016/j.apsb.2017.11.009
71. Radecke C.E., Warrick A.E., Singh G.D., Rogers J.H., Simon S.I., Armstrong E.J. Coronary artery endothelial cells and microparticles increase expression of VCAM-1 in myocardial infarction. Thromb. Haemost. 2015;113(3):605–16. DOI: 10.1160/TH14-02-0151
72. Wei Y., Zhu M., Li S., Hong T., Guo X., Li Y., Liu Y., Hou X., He B. Engineered biomimetic nanoplatform protects the myocardium against ischemia/reperfusion injury by inhibiting pyroptosis. ACS App. Mater. Interfaces. 2021;13(29):33756–33766. DOI: 10.1021/acsami.1c03421.
73. Neves K.B., Rios F.J., Sevilla-Montero J., Montezano A.C., Touyz R.M. Exosomes and the cardiovascular system: role in car diovas cular health and disease. J. Physiol. 2022. DOI: 10.1113/JP282054
74. Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Exosome–mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9(6):654–9. DOI: 10.1038/ncb1596
75. Xu R., Greening D.W., Zhu H.J., Takahashi N., Simpson R.J. Extracellular vesicle isolation and characterization: toward clinical application. J. Clin. Invest. 2016;126(4):1152–62. DOI: 10.1172/JCI81129
76. Liu S., Chen X., Bao L., Liu T., Yuan P., Yang X., Qiu X., Gooding J.J., Bai Y., Xiao J., Pu F., Jin Y. Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles. Nat. Biomed. Eng. 2020;4(11):1063–1075. DOI: 10.1038/s41551–020–00637–1
77. Ferreira M.P.A., Ranjan S., Kinnunen S., Correia A., Talman V., Mäkilä E., Barrios-Lopez B., Kemell M., Balasubramanian V., Salonen J., Hirvonen J., Ruskoaho H., Airaksinen A.J., Santos H.A. Drug-loaded multifunctional nanoparticles targeted to the endocardial layer of the injured heart modulate hypertrophic signaling. Small. 2017;13(33). DOI: 10.1002/smll.201701276
78. Yu J., Li W., Yu D. Atrial natriuretic peptide modifi ed oleate adenosine prodrug lipid nanocarriers for the treatment of myocardial infarction: in vitro and in vivo evaluation. Drug. Des. Devel. Ther. 2018;12:1697–1706. DOI: 10.2147/DDDT.S166749
79. Jamasbi J., Ayabe K., Goto S., Nieswandt B., Peter K., Siess W. Platelet receptors as therapeutic targets: past, present and future. Thromb. Haemost. 2017;117(7):1249–1257. DOI: 10.1160/TH16-12-0911
80. Hernández-Reséndiz S., Muñoz-Vega M., Contreras W.E., Crespo-Avilan G.E., Rodriguez-Montesinos J., Arias-Carrión O., Pérez-Méndez O., Boisvert W.A., Preissner K.T., Cabrera-Fuentes H.A. Responses of endothelial cells towards ischemic conditioning following acute myocardial infarction. Cond. Med. 2018;1(5):247–258.
81. Li F., Liu D., Liu M., Ji Q., Zhang B., Mei Q., Cheng Y., Zhou S. Tregs biomimetic nanoparticle to reprogram infl ammatory and redox microenvironment in infarct tissue to treat myocardial ischemia reperfusion injury in mice. J. Nanobiotechnology. 2022;20(1):251. DOI: 10.1186/s12951-022-01445-2
82. Zhou T., Yang X., Wang T., Xu M., Huang Z., Yu R., Jiang Y., Zhou Y., Shi J. Platelet–Membrane–Encapsulated Carvedilol with Improved Targeting Ability for Relieving Myocardial Ischemia–Reperfusion Injury. Membranes (Basel). 2022;12(6):605. DOI: 10.3390/membranes12060605
83. Tang J., Su T., Huang K., Dinh P.U., Wang Z., Vandergriff A., Hensley M.T., Cores J., Allen T., Li T., Sproul E., Mihalko E., Lobo L.J., Ruterbories L., Lynch A., Brown A., Caranasos T.G., Shen D., Stouffer G.A., Gu Z., Zhang J., Cheng K. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nat. Biomed. Eng. 2018;2:17–26. DOI: 10.1038/s41551-017-0182-x
84. Valikeserlis I., Athanasiou A.A., Stakos D. Cellular mechanisms and pathways in myocardial reperfusion injury. Coron. Artery Dis. 2021;32(6):567–577. DOI: 10.1097/MCA.0000000000000997
85. Konegawa Y., Kuwahara T., Jo J.I., Murata K., Takeda T., Ikeda T., Minatoya K., Masumoto H., Tabata Y. Pioglitazone-incorporated microspheres targeting macrophage polarization alleviates cardiac dysfunction after myocardial infarction. Eur. J. Cardiothorac. Surg. 2022;62(5):ezac414. DOI: 10.1093/ejcts/ezac414
86. Nakano Y., Matoba T., Tokutome M., Funamoto D., Katsuki S., Ikeda G., Nagaoka K., Ishikita A., Nakano K., Koga J., Sunagawa K., Egashira K. Nanoparticle-mediated delivery of irbesartan induces cardioprotection from myocardial ischemia-reperfusion injury by antagonizing monocyte-mediated infl ammation. Sci. Rep. 2016;6:29601. DOI: 10.1038/srep29601
87. Tokutome M., Matoba T., Nakano Y., Okahara A., Fujiwara M., Koga J.I., Nakano K., Tsutsui H., Egashira K. Peroxisome proliferator-activated receptor-gamma targeting nanomedicine promotes cardiac healing after acute myocardial infarction by skewing monocyte/ macrophage polarization in preclinical animal models. Cardiovasc. Res. 2019;115(2):419–431. DOI: 10.1093/cvr/cvy200
88. Swirski F.K., Nahrendorf M., Etzrodt M., Wildgruber M., Cortez-Retamozo V., Panizzi P., Figueiredo J.L., Kohler R.H., Chudnovskiy A., Waterman P., Aikawa E., Mempel T.R., Libby P., Weissleder R., Pittet M.J. Identifi cation of splenic reservoir monocytes and their deployment to infl ammatory sites. Science. 2009;325(5940):612–6. DOI: 10.1126/science.1175202
89. Wang J., Seo M.J., Deci M.B., Weil B.R., Canty J.M., Nguyen J. Effect of CCR2 inhibitor-loaded lipid micelles on infl ammatory cell migration and cardiac function after myocardial infarction. Int. J. Nanomedicine. 2018;13:6441–6451. DOI: 10.2147/IJN.S178650
90. Puré E., Cuff C.A. A crucial role for CD44 in infl ammation. Trends Mol. Med. 2001;7(5):213–21. DOI: 10.1016/s1471-4914(01)01963-3
91. Glucksam–Galnoy Y., Zor T., Margalit R. Hyaluronan-modifi ed and regular multilamellar liposomes provide sub-cellular targeting to macrophages, without eliciting a pro-infl ammatory response. J. Control. Release. 2012;160(2):388–93. DOI: 10.1016/j.jconrel.2011.10.008
92. Ben-Mordechai T., Kain D., Holbova R., Landa N., Levin L.P., Elron-Gross I., Glucksam-Galnoy Y., Feinberg M.S., Margalit R., Leor J. Targeting and modulating infarct macrophages with hemin formulated in designed lipid-based particles improves cardiac remodeling and function. J. Control Release. 2017;257:21–31. DOI: 10.1016/j.jconrel.2017.01.001
93. Соловаров И.С., Хаснатинов М.А., Ляпунова Н.А., Кондратов И.Г., Данчинова Г.А. Разработка подходов к селекции ДНК-аптамеров на основе мембранной ультрафильтрации комплекса аптамер–мишень. Acta Biomedica Scientifi ca. 2022;7(6):119–127.
94. Huang S.S., Lee K.J., Chen H.C., Prajnamitra R.P., Hsu C.H., Jian C.B., Yu X.E., Chueh D.Y., Kuo C.W., Chiang T.C., Choong O.K., Huang S.C., Beh C.Y., Chen L.L., Lai J.J., Chen P., Kamp T.J., Tien Y.W., Lee H.M., Hsieh P.C. Immune cell shuttle for precise delivery of nanotherapeutics for heart disease and cancer. Sci. Adv. 2021;7(17):eabf2400. DOI: 10.1126/sciadv.abf2400
95. Wong D.J., Park D.D., Park S.S., Haller C.A., Chen J., Dai E., Liu L., Mandhapati A.R., Eradi P., Dhakal B., Wever W.J., Hanes M., Sun L., Cummings R.D., Chaikof E.L. A PSGL–1 glycomimetic reduces thrombus burden without affecting hemostasis. Blood. 2021;138(13):1182–1193. DOI: 10.1182/blood.2020009428
96. Sarma J., Laan C.A., Alam S., Jha A., Fox K.A. Dransfi eld I. Increased platelet binding to circulating monocytes in acute coronary syndromes. Circulation. 2002;105(18):2166–71. DOI: 10.1161/01.cir.0000015700.27754.6f
97. An G., Wang H., Tang R., Yago T., McDaniel J.M., McGee S., Huo Y., Xia L. P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation. 2008;117(25):3227–37. DOI: 10.1161/CIRCULATIONAHA.108.771048
98. Huo Y., Schober A., Forlow S.B., Smith D.F., Hyman M.C., Jung S., Littman D.R., Weber C., Ley K. Circulating activated platelets exacerbate atherosclerosis in mice defi cient in apolipoprotein E. Nat. Med. 2003;9(1):61–7. DOI: 10.1038/nm810
99. Cheng B., Toh E.K., Chen K.H., Chang Y.C., Hu C.J., Wu H.C., Chau L.Y., Chen P., Hsieh P.C. Biomimicking platelet-monocyte interactions as a novel targeting strategy for heart healing. Adv. Healthc Mater. 2016;5(20):2686–2697. DOI: 10.1002/adhm.201600724
100. Liu Y., Gao XM., Fang L., Jennings N.L., Su Y., Q X., Samson A.L., Kiriazis H., Wang X.F., Shan L., Sturgeon S.A., Medcalf R.L., Jackson S.P., Dart A.M., Du X.J. Novel role of platelets in mediating infl ammatory responses and ventricular rupture or remodeling following myocardial infarction. Arterioscler Thromb Vasc Biol. 2011;31(4):834–41. DOI: 10.1161/ATVBAHA.110.220467
101. Tan H., Song Y., Chen J., Zhang N., Wang Q., Li Q., Gao J., Yang H., Dong Z., Weng X., Wang Z., Sun D., Yakufu W., Pang Z., Huang Z., Ge J. Platelet-like fusogenic liposome-mediated targeting delivery of mir-21 improves myocardial remodeling by reprogramming macrophages post myocardial ischemia-reperfusion injury. Adv. Sci. (Weinh). 2021;8(15):e2100787. DOI: 10.1002/advs.202100787
102. Schanze N., Bode C., Duerschmied D. Platelet contributions to myocardial ischemia/reperfusion injury. Front Immunol. 2019;10:1260. DOI: 10.3389/fimmu.2019.01260
103. Keykhaei M., Ashraf H., Rashedi S., Farrokhpour H., Heidari B., Zokaei S., Bagheri S., Foroumadi R., Asgarian S., Amirian A., Saleh S.K., James S. Differences in the 2020 ESC Versus 2015 ESC and 2014 ACC/AHA Guidelines on the management of acute coronary syndromes in patients presenting without persistent st-segment elevation. Curr. Atheroscler. Rep. 2021;23(12):77. DOI: 10.1007/s11883–021–00976–7
104. Xie S., Mo C., Cao W., Xie S., Li S., Zhang Z., Li X. Bacteria-propelled microtubular motors for effi cient penetration and targeting delivery of thrombolytic agents. Acta Biomater. 2022;142:49–59. DOI: 10.1016/j.actbio.2022.02.008
105. Juenet M., Aid-Launais R., Li B., Berger A., Aerts J., Ollivier V., Nicoletti A., Letourneur D., Chauvierre C. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials. 2018;156:204–216. DOI: 10.1016/j.biomaterials.2017.11.047
106. Chen Y., Zhao Y., Chen W., Xie L., Zhao Z.A., Yang J., Chen Y., Lei W., Shen Z. MicroRNA-133 overexpression promotes the therapeutic effi cacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res. Ther. 2017;8(1):268. DOI: 10.1186/s13287-017-0722-z
107. Yu B.T., Yu N., Wang Y., Zhang H., Wan K., Sun X., Zhang C.S. Role of miR-133a in regulating TGF-β1 signaling pathway in myocardial fi brosis after acute myocardial infarction in rats. Eur. Rev. Med. Pharmacol. Sci. 2019;23(19):8588–8597. DOI: 10.26355/eurrev_201910_19175
108. Zhang X.G., Wang L.Q., Guan H.L. Investigating the expression of miRNA-133 in animal models of myocardial infarction and its effect on cardiac function. Eur. Rev. Med. Pharmacol. Sci. 2019;23(13):5934–5940. DOI: 10.26355/eurrev_201907_18338
109. Sun B., Liu S., Hao R., Dong X., Fu L., Han B. RGD-PEG-PLA Delivers MiR-133 to Infarct Lesions of Acute Myocardial Infarction Model Rats for Cardiac Protection. Pharmaceutics. 2020;12(6):575. DOI: 10.3390/pharmaceutics12060575
110. Duro-Castano A., Gallon E., Decker C., Vicent M.J. Modulating angiogenesis with integrin-targeted nanomedicines. Adv. Drug. Deliv. Rev. 2017;119:101–119. DOI: 10.1016/j.addr.2017.05.008
111. Halestrap A.P. Mitochondrial permeability: dual role for the ADP/ ATP translocator? Nature. 2004;430(7003):1. DOI: 10.1038/nature02816
112. Huo J., Lu S., Kwong J.Q., Bround M.J., Grimes K.M., Sargent M.A., Brown M.E., Davis M.E., Bers D.M., Molkentin J.D. MCUb induction protects the heart from postischemic remodeling. Circ. Res. 2020;127(3):379–390. DOI: 10.1161/CIRCRESAHA.119.316369
113. Ikeda G., Matoba T., Nakano Y., Nagaoka K., Ishikita A., Nakano K., Funamoto D., Sunagawa K., Egashira K. Nanoparticle-mediated targeting of cyclosporine a enhances cardioprotection against ischemia-reperfusion injury through inhibition of mitochondrial permeability transition pore opening. Sci. Rep. 2016;6:20467. DOI: 10.1038/srep20467
114. Zhang C.X., Cheng Y., Liu D.Z., Liu M., Cui H., Zhang B.L., Mei Q.B., Zhou S.Y. Mitochondria-targeted cyclosporin A deli very system to treat myocardial ischemia reperfusion injury of rats. J. Nanobiotechnology. 2019;17(1):18. DOI: 10.1186/s12951-019-0451-9
115. Zhao K., Zhao G.M., Wu D., Soong Y., Birk A.V., Schiller P.W., Szeto H.H. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death and reperfusion injury. J. Biol. Chem. 2004;279(33):34682– 90. DOI: 10.1074/jbc.M402999200
116. Birk A.V., Liu S., Soong Y., Mills W., Singh P., Warren J.D., Seshan S.V., Pardee J.D., Szeto H.H. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J. Am. Soc. Nephrol. 2013;24(8):1250–61. DOI: 10.1681/ASN.2012121216
117. Yuan Y., Wang Y.Y., Liu X., Luo B., Zhang L., Zheng F., Li X.Y., Guo L.Y., Wang L., Jiang M., Pan Y.M., Yan Y.W., Yang J.Y., Chen S.Y., Wang J.N., Tang J.M. KPC1 alleviates hypoxia/reoxygenation-induced apoptosis in rat cardiomyocyte cells though BAX degradation. J. Cell Physiol. 2019;234(12):22921–22934. DOI: 10.1002/jcp.28854
118. Ishikita A., Matoba T., Ikeda G., Koga J., Mao Y., Nakano K., Takeuchi O., Sadoshima J., Egashira K. Nanoparticle-mediated delivery of mitochondrial division inhibitor 1 to the myocardium protects the heart from ischemia-reperfusion injury through inhibition of mitochondria outer membrane permeabilization: a new therapeutic modality for acute myocardial infarction. J. Am. Heart Assoc. 2016;5(7):e003872. DOI: 10.1161/JAHA.116.003872
119. Zhou L., Zuo Z., Chow M.S. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics and clinical use. J. Clin. Pharmacol. 2005;45(12):1345–59. DOI: 10.1177/0091270005282630
120. Zhang S., Li J., Hu S., Wu F., Zhang X. Triphenylphosphonium and D-α-tocopheryl polyethylene glycol 1000 succinate-modifed, tanshinone IIA-loaded lipid-polymeric nanocarriers for the targeted therapy of myocardial infarction. Int. J. Nanomedicine. 2018;13:4045–4057. DOI: 10.2147/IJN.S165590
121. Wang J., Zhang S., Di L. Acute myocardial infarction therapy: in vitro and in vivo evaluation of atrial natriuretic peptide and triphenylphosphonium dual ligands modifi ed, baicalin-loaded nanoparticulate system. Drug. Deliv. 2021;28(1):2198–2204. DOI: 10.1080/10717544.2021.1989086.
122. Wang X., He F., Liao Y., Song X., Zhang M., Qu L., Luo T., Zhou S., Ling Y., Guo J., Chen A. Baicalin pretreatment protects against myocardial ischemia/reperfusion injury by inhibiting mitochondrial damage-mediated apoptosis. Int. J. Cardiol. 2013;168(4):4343–5. DOI: 10.1016/j.ijcard.2013.05.077
123. Chen Y., Jia L., Zhu G., Wang W., Geng M., Lu H., Zhang Y., Zhou M., Zhang F., Cheng X. Sortase A-mediated cyclization of novel polycyclic RGD peptides for ανβ3 integrin targeting. Bioorg. Med. Chem. Lett. 2022;73:128888. DOI: 10.1016/j.bmcl.2022.128888
124. Makowski M.R., Ebersberger U., Nekolla S., Schwaiger M. In vivo molecular imaging of angiogenesis, targeting alphavbeta3 integrin expression, in a patient after acute myocardial infarction. Eur. Heart J. 2008;29(18):2201. DOI: 10.1093/eurheartj/ehn129
125. Yan J., Guo J., Wang Y., Xing X., Zhang X., Zhang G., Dong Z. Acute myocardial infarction therapy using calycosin and tanshinone co-loaded; mitochondrion-targeted tetrapeptide and cyclic arginyl-glycyl-aspartic acid peptide co-modifi ed lipid-polymer hybrid nano-system: preparation, characterization, and anti myocardial infarction activity assessment. Drug Deliv. 2022;29(1):2815– 2823. DOI: 10.1080/10717544.2022.2118401
126. Fan K., Xi J., Fan L., Wang P., Zhu C., Tang Y., Xu X., Liang M., Jiang B., Yan X., Gao L. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018;9(1):1440. DOI: 10.1038/s41467-018-03903-8
127. Singh N., Savanur M.A., Srivastava S., D'Silva P., Mugesh G. A Redox Modulatory Mn3 O4 Nanozyme with Multi-Enzyme Activity Provides Effi cient Cytoprotection to Human Cells in a Parkinson's Disease Model. Angew. Chem. Int. Ed. Engl. 2017;56(45):14267– 14271. DOI: 10.1002/anie.201708573
128. Yao J., Cheng Y., Zhou M., Zhao S., Lin S., Wang X., Wu J., Li S., Wei H. ROS scavenging Mn3O4 nanozymes for in vivo anti-in- fl ammation. Chem. Sci. 2018;9(11):2927–2933. DOI: 10.1039/c7sc05476a
129. Zhang Y., Khalique A., Du X., Gao Z., Wu J., Zhang X., Zhang R., Sun Z., Liu Q., Xu Z., Midgley A.C., Wang L., Yan X., Zhuang J., Kong D., Huang X. Biomimetic design of mitochondria-targeted hybrid nanozymes as superoxide scavengers. Adv. Mater. 2021;33(9):e2006570. DOI: 10.1002/adma.202006570
130. Huang Y., Ren J., Qu X. Nanozymes: Classifi cation, Catalytic Mechanisms, Activity Regulation and Applications. Chem. Rev. 2019;119(6):4357–4412. DOI: 10.1021/acs.chemrev.8b00672
131. Spinale F.G. Myocardial matrix remodeling and the matrix metalloproteinases: infl uence on cardiac form and function. Physiol. Rev. 2007;87(4):1285–342. DOI: 10.1152/physrev.00012.2007
132. Nguyen M.M., Carlini A.S., Chien M.P., Sonnenberg S., Luo C., Braden R.L., Osborn K.G., Li Y., Gianneschi N.C., Christman K.L. Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv. Mater. 2015; 27(37):5547–52. DOI: 10.1002/adma.201502003
133. Bock-Marquette I., Saxena A., White M.D., Dimaio J.M., Srivastava D. Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature. 2004;432(7016):466–72. DOI: 10.1038/nature03000
134. Smart N., Risebro C.A., Melville A.A., Moses K., Schwartz R.J., Chien K.R., Riley P.R. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature. 2007;445(7124):177–82. DOI: 10.1038/nature05383
135. Huang Z., Song Y., Pang Z., Zhang B., Yang H., Shi H., Chen J., Gong H., Qian J., Ge J. Targeted delivery of thymosin beta 4 to the injured myocardium using CREKA-conjugated nanoparticles. Int. J. Nanomedicine. 2017;12:3023–3036. DOI: 10.2147/IJN.S131949
136. Мальчикова С.В., Трушникова Н.С., Казаковцева М.В., Максимчук-Колобова Н.С. Факторы сердечно-сосудистого риска, клинические проявления и тактика ведения инфаркта миокарда у пациентов старческого возраста и долгожителей в зависимости от гериатрического статуса. Кардиоваскулярная терапия и профилактика. 2023;22(2):3376.
137. Shiozaki A.A., Senra T., Morikawa A.T., Deus D.F., Paladino-Filho A.T., Pinto I.M., Maranhão R.C. Treatment of patients with aortic atherosclerotic disease with paclitaxel-associated lipid nanoparticles. Clinics (Sao Paulo). 2016;71(8):435–9. DOI: 10.6061/clinics/2016(08)05
138. Ruiz J., Kouiavskaia D., Migliorini M., Robinson S., Saenko E.L., Gorlatova N., Li D., Lawrence D., Hyman B.T., Weisgraber K.H., Strickland D.K. The apoE isoform binding properties of the VLDL receptor reveal marked differences from LRP and the LDL receptor. J. Lipid Res. 2005;46(8):1721–31. DOI: 10.1194/jlr.M500114–JLR200
139. Maranhão R.C., Tavares E.R., Padoveze A.F., Valduga C.J., Rodrigues D.G., Pereira M.D. Paclitaxel associated with cholesterol-rich nanoemulsions promotes atherosclerosis regression in the rabbit. Atherosclerosis. 2008;197(2):959–66. DOI: 10.1016/j.atherosclerosis.2007.12.051
140. Romero M., Suárez-de-Lezo J., Herrera C., Pan M., López-Aguilera J., Suárez-de-Lezo J Jr., Baeza-Garzón F., Hidalgo-Lesmes F.J., Fer nández-López O., Martínez–Atienza J., Cebrián E., Mar tínPalanco V., Jiménez-Moreno R., Gutiérrez-Fernández R., Nogueras S., Carmona M.D., Ojeda S., Cuende N., Mata R. Randomised, double-blind, placebo-controlled clinical trial for evaluating the effi cacy of intracoronary injection of autologous bone marrow mononuclear cells in the improvement of the ventricular function in patients with idiopathic dilated myocardiopathy: a study protocol. BMC Cardiovasc. Disord. 2019;19(1):203. DOI: 10.1186/s12872–019–1182–4
141. Attar A., Nouri F., Yazdanshenas A., Hessami K., Vosough M., Abdi-Ardekani A., Izadpanah P., Ramzi M., Kojouri J., Pouladfar G., Monabati A. Single vs. double intracoronary injection of mesenchymal stromal cell after acute myocardial infarction: the study protocol from a randomized clinical trial: BOOSTER–TAHA7 trial. Trials. 2022;23(1):293. DOI: 10.1186/s13063-022-06276-y
142. Oommen S., Cantero Peral S., Qureshi M.Y., Holst K.A., Burkhart H.M., Hathcock M.A., Kremers W.K., Brandt E.B., Larsen B.T., Dearani J.A., Edwards B.S., Maleszewski J.J., Nelson T.J. Wanek Program Pre-Clinical Pipeline. Autologous Umbilical Cord Blood-Derived Mononuclear Cell Therapy Promotes Cardiac Proliferation and Adaptation in a Porcine Model of Right Ventricle Pressure Overload. Cell Transplant. 2022;31:9636897221120434. DOI: 10.1177/09636897221120434
143. Assuncao-Jr A.N., Rochitte C.E., Kwong R.Y., Wolff-Gowdak L.H., Krieger J.E., Jerosch-Herold M. Bone marrow cells improve coronary fl ow reserve in ischemic nonrevascularized myocardium: a MiHeart/IHD quantitative perfusion CMR substudy. JACC Cardiovasc. Imaging. 2022;15(5):812–824. DOI: 10.1016/j.jcmg.2021.12.011
144. Kharlamov A.N., Tyurnina A.E., Veselova V.S., Kovtun O.P., Shur V.Y., Gabinsky J.L. Silica-gold nanoparticles for atheroprotective management of plaques: results of the NANOM-FIM trial. Nanoscale. 2015;7(17):8003–15. DOI: 10.1039/c5nr01050k
Рецензия
Для цитирования:
Киденко В.А., Метова М.М., Габриелян Е.Ю., Трусов Ю.А., Мелихова А.Д., Муслимова Е.П., Седьмова Я.В., Хабибуллина К.Р., Маликова Е.В., Валиуллина Л.А., Багаутдинова Д.Д., Петракова А.В., Терехина К.С. Наночастицы для адресной доставки лекарственных средств в современной кардиологии. Клиническая медицина. 2023;101(9-10):454-466. https://doi.org/10.30629/0023-2149-2023-101-9-10-454-466
For citation:
Kidenko V.A., Metova M.M., Gabrielyan E.Yu., Trusov Yu.A., Melikhova A.D., Muslimova E.P., Sedmova Ya.V., Khabibullina K.R., Malikova E.V., Valiullina L.A., Bagautdinova D.D., Petrakova A.V., Terekhina K.S. Nanoparticles for targeted drug delivery in modern cardiology. Clinical Medicine (Russian Journal). 2023;101(9-10):454-466. (In Russ.) https://doi.org/10.30629/0023-2149-2023-101-9-10-454-466