Preview

Clinical Medicine (Russian Journal)

Advanced search

Nanoparticles for targeted drug delivery in modern cardiology

https://doi.org/10.30629/0023-2149-2023-101-9-10-454-466

Abstract

Myocardial infarction (MI) is the leading cause of death worldwide. The loss of cardiomyocytes resulting from injuries such as acute MI often leads to fibrotic scarring and depressed cardiac function. The use of targeted drug delivery systems is always necessary as they provide unique advantages for increasing efficacy and reducing undesirable effects. Nanoparticles (NPs) are the most common means of delivering therapeutic agents to target tissues. NPs for drug delivery can be composed of various nanomaterials and structures, including lipids, polymers, dendrimers, carbon nanotubes, and metal nanoparticles. We have reviewed approaches to cardio-specific drug delivery based on NPs for the treatment of ischemic heart disease in preclinical and clinical studies. Drug delivery based on NPs has the potential for specific targeting of tissues and cells, as well as for prolonged release of multiple therapeutic agents. However, the use of NPs in the therapy of cardiovascular diseases is relatively limited compared to other areas such as oncology and neurology. One of the main obstacles is the lack of specificity in current targeting systems for the heart. Future research is needed to identify specific ligands/receptors in cardiomyocytes and develop new NPs with high affinity and specificity.

About the Authors

V. A. Kidenko
Rostov State Medical University of the Ministry of Health of Russia
Russian Federation

Kidenko Victoria A.

344022, Rostov-on-Don



M. M. Metova
Rostov State Medical University of the Ministry of Health of Russia
Russian Federation

Metova Marietta M.

344022, Rostov-on-Don



E. Yu. Gabrielyan
Rostov State Medical University of the Ministry of Health of Russia
Russian Federation

Gabrielyan Elizaveta Yu.

344022, Rostov-on-Don



Yu. A. Trusov
Samara State Medical University of the Ministry of Health of Russia
Russian Federation

Trusov Yuri A.

443099, Samara



A. D. Melikhova
Rostov State Medical University of the Ministry of Health of Russia
Russian Federation

Melikhova Anastatiya D.

344022, Rostov-on-Don



E. P. Muslimova
Bashkir State Medical University of the Ministry of Health of Russia
Russian Federation

Muslimova Elena P.

450008, Ufa



Ya. V. Sedmova
Samara State Medical University of the Ministry of Health of Russia
Russian Federation

Sedmova Yana V.

443099, Samara



K. R. Khabibullina
Bashkir State Medical University of the Ministry of Health of Russia
Russian Federation

Khabibullina Kamilla R.

450008, Ufa



E. V. Malikova
Rostov State Medical University of the Ministry of Health of Russia
Russian Federation

Mаlikova Elizaveta V.

344022, Rostov-on-Don



L. A. Valiullina
Bashkir State Medical University of the Ministry of Health of Russia
Russian Federation

Valiullina Lilia A.

450008, Ufa



D. D. Bagautdinova
Bashkir State Medical University of the Ministry of Health of Russia
Russian Federation

Bagautdinova Diana D.

450008, Ufa



A. V. Petrakova
Rostov State Medical University of the Ministry of Health of Russia
Russian Federation

Petrakova Anna V.

344022, Rostov-on-Don



K. S. Terekhina
Bashkir State Medical University of the Ministry of Health of Russia
Russian Federation

Terekhina Ksenia S.

450008, Ufa



References

1. Li J., Hu S., Zhu D., Huang K., Mei X., López de Juan Abad B., Cheng K. All roads lead to rome (the heart): cell retention and outcomes from various delivery routes of cell therapy products to the heart. J. Am. Heart Assoc. 2021;10(8):e020402. DOI: 10.1161/JAHA.120.020402

2. Sahoo S., Kariya T., Ishikawa K. Targeted delivery of therapeutic agents to the heart. Nat Rev. Cardiol. 2021;18(6):389–399. DOI: 10.1038/s41569–020–00499–9

3. Razavi E., Ramezani A., Kazemi A., Attar A. Effect of treatment with colchicine after acute coronary syndrome on major cardiovascular events: a systematic review and meta-analysis of clinical trials. Cardiovasc. Ther. 2022; 2022:8317011. DOI: 10.1155/2022/8317011

4. Wang D., Liu B., Xiong T., Yu W., Yang H., Wang J., Jing X., She Q. Transcription factor Foxp1 stimulates angiogenesis in adult rats after myocardial infarction. Cell Death. Discov. 2022;10;8(1):381. DOI: 10.1038/s41420–022–01180–5

5. Monahan D.S., Almas T., Wyile R., Cheema F.H., Duffy G.P., Hameed A. Towards the use of localised delivery strategies to counteract cancer therapy-induced cardiotoxicities. Drug. Deliv. Transl. Res. 2021;11(5):1924–1942. DOI: 10.1007/s13346–020–00885–3

6. Monahan D.S., Flaherty E., Hameed A., Duffy G.P. Resveratrol signifi cantly improves cell survival in comparison to dexrazoxane and carvedilol in a h9c2 model of doxorubicin induced cardiotoxicity. Biomed. Pharmacother. 2021;140:111702. DOI: 10.1016/j.biopha.2021.111702

7. Gastl M., Sürder D., Corti R., Faruque Osmany D.M.M., Gotschy A., von Spizcak J., Sokolska J., Metzen D., Alkadhi H., Ruschitzka F., Kozerke S., Manka R. Effect of intracoronary bone marrow-derived mononuclear cell injection early and late after myocardial infarction on CMR-derived myocardial strain. Int. J. Cardiol. 2020;310:108– 115. DOI: 10.1016/j.ijcard.2020.01.025

8. Lamirault G., de Bock E., Sébille V., Delasalle B., Roncalli J., Susen S., Piot C., Trochu J.N., Teiger E., Neuder Y., Le Tourneau T., Manrique A., Hardouin J.B., Lemarchand P. Sustained quality of life improvement after intracoronary injection of autologous bone marrow cells in the setting of acute myocardial infarction: results from the BONAMI trial. Qual. Life Res. 2017;26(1):121–125. DOI: 10.1007/s11136–016–1366–7

9. Zhang J., Wu Z., Fan Z., Qin Z., Wang Y., Chen J., Wu M., Chen Y., Wu C., Wang J. Pericardial application as a new route for implanting stem-cell cardiospheres to treat myocardial infarction. J. Physiol. 2018;596(11):2037–2054. DOI: 10.1113/JP275548

10. Dergilev K.V., Tsokolayeva Z.I., Beloglazova I.B., Ratner E.I., Parfyonova E.V. Epicardial transplantation of cardiac progenitor cells based cells sheets is more promising method for stimulation of myocardial regeneration, than conventional cell injections. Kardiologiia. 2019;59(5):53–60. DOI: h10.18087/cardio.2019.5.2597

11. Lin X., Liu Y., Bai A., Cai H., Bai Y., Jiang W., Yang H., Wang X., Yang L., Sun N., Gao H. A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nat. Biomed. Eng. 2019;3(8):632– 643. DOI: 10.1038/s41551–019–0380–9

12. Mathieu E., Lamirault G., Toquet C., Lhommet P., Rederstorff E., Sourice S., Biteau K., Hulin P., Forest V., Weiss P., Guicheux J., Lemarchand P. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. PLoS One. 2012;7(12):e51991. DOI: 10.1371/journal.pone.0051991

13. Zeng X., Zou L., Levine R.A., Guerrero J.L., Handschumacher M.D., Sullivan S.M., Braithwaite G.J.C., Stone J.R., Solis J., Muratoglu O.K., Vlahakes G.J., Hung J. Effi cacy of polymer injection for ischemic mitral regurgitation: persistent reduction of mitral regurgitation and attenuation of left ventricular remodeling. JACC Cardiovasc. Interv. 2015;8(2):355–363. DOI: 10.1016/j.jcin.2014.09.016

14. Mihic A., Cui Z., Wu J., Vlacic G., Miyagi Y., Li S.H., Lu S., Sung H.W., Weisel R.D., Li R.K. A Conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct. Circulation. 2015;132(8):772– 84. DOI: 10.1161/CIRCULATIONAHA.114.014937

15. Fan C., Joshi J., Li F., Xu B., Khan M., Yang J., Zhu W. Nanoparticle-mediated drug delivery for treatment of ischemic heart disease. Front. Bioeng. Biotechnol. 2020;8:687. DOI: 10.3389/fbioe.2020.00687

16. Yang F., Xue J., Wang G., Diao Q. Nanoparticle-based drug delivery systems for the treatment of cardiovascular diseases. Front. Pharmacol. 2022; 13:999404. DOI: 10.3389/fphar.2022.999404

17. Li C., Naveed M., Dar K., Liu Z., Baig M.M.F.A., Lv R., Saeed M., Dingding C., Feng Y., Xiaohui Z. Therapeutic advances in cardiac targeted drug delivery: from theory to practice. J. Drug. Target. 2021; 29(3):235–248. DOI: 10.1080/1061186X.2020.1818761

18. Li Z., Hu S., Cheng K. Platelets and their biomimetics for regenerative medicine and cancer therapies. J. Mater. Chem B. 2018;6(45):7354– 7365. DOI: 10.1039/C8TB02301H

19. Su T., Huang K., Ma H., Liang H., Dinh P.U., Chen J., Shen D., Allen T.A., Qiao L., Li Z., Hu S., Cores J., Frame B.N., Young A.T., Yin Q., Liu J., Qian L., Caranasos T.G., Brudno Y., Ligler F.S., Cheng K. Platelet-inspired nanocells for targeted heart repair after ischemia/reperfusion injury. Adv. Funct. Mater. 2019;29(4):1803567. DOI: 10.1002/adfm.201803567

20. Cannatà A., Ali H., Sinagra G., Giacca M. Gene therapy for the heart lessons learned and future perspectives. Circ. Res. 2020;126(10):1394– 1414. DOI: 10.1161/CIRCRESAHA.120.315855

21. O'Dwyer J., Murphy R., González-Vázquez A., Kovarova L., Pravda M., Velebny V., Heise A., Duffy G.P., Cryan S.A. Translational studies on the potential of a VEGF nanoparticle-loaded hyaluronic acid hydrogel. Pharmaceutics. 2021;13(6):779. DOI: 10.3390/pharmaceutics13060779

22. Pala R., Pattnaik S., Busi S., Nauli S .M. Nanomaterials as Novel Cardiovascular theranostics. Pharmaceutics. 2021;13(3):348. DOI: 10.3390/pharmaceutics13030348

23. Wang D.K., Rahimi M., Filgueira C.S. Nanotechnology applications for cardiovascular disease treatment: Current and future perspectives. Nanomedicine. 2021;34:102387. DOI: 10.1016/j.nano.2021.102387

24. Joshi J., Kothapalli C.R. Nanofi bers based tissue engineering and drug delivery approaches for myocardial regeneration. Curr. Pharm. Des. 2015;21(15):2006–20. DOI: 10.2174/1381612821666150302153138

25. Soares S., Sousa J., Pais A., Vitorino C. Nanomedicine: principles, properties and regulatory issues. Front. Chem. 2018;6:360. DOI https://doi.org/10.3389/fchem.2018.00360

26. Hoshyar N., Gray S., Han H., Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond). 2016;11(6):673–92. DOI: 10.2217/nnm.16.5

27. Boltnarova B., Kubackova J., Skoda J., Stefela A., Smekalova M., Svacinova P., Pavkova I., Dittrich M., Scherman D., Zbytovska J., Pavek P., Holas O. PLGA Based Nanospheres as a Potent Macrophage-Specifi c Drug Delivery System. Nanomaterials (Basel). 2021;11(3):749. DOI: 10.3390/nano11030749

28. Lloris-Garcerá P., Klinter S., Chen L., Skynner M.J., Löving R., Frauenfeld J. DirectMX — one-step reconstitution of membrane proteins from crude cell membranes into salipro nanoparticles. Front. Bioeng. Biotechnol. 2020;8:215. DOI: 10.3389/fbioe.2020.00215

29. Medina–Cruz D., Mostafavi E., Vernet-Crua A., Cheng J., Shah V., Cholula-Diaz J.L., Guisbiers G., Tao J., García-Martín J.M., Webster T.J. Green nanotechnology-based drug delivery systems for osteogenic disorders. Expert Opin. Drug. Deliv. 2020;17(3):341–356. DOI: 10.1080/17425247.2020.1727441

30. Aziz A., Rehman U., Sheikh A., Abourehab M.A.S., Kesharwani P. Lipid–based nanocarrier mediated CRISPR/Cas9 delivery for cancer therapy. J. Biomater. Sci. Polym Ed. 2023;34(3):398–418. DOI: 10.1080/09205063.2022.2121592

31. Yu C.H., Betrehem U.M., Ali N., Khan A., Ali F., Nawaz S., Sajid M., Yang Y., Chen T., Bilal M. Design strategies., surface functionalization., and environmental remediation potentialities of polymer-functionalized nanocomposites. Chemosphere. 2022;306:135656. DOI: 10.1016/j.chemosphere.2022.135656

32. Radhakrishnan D., Mohanan S., Choi G., Choy J.H., Tiburcius S., Trinh H.T., Bolan S., Verrills N., Tanwar P., Karakoti A., Vinu A. The emergence of nanoporous materials in lung cancer therapy. Sci. Technol. Adv. Mater. 2022;23(1):225–274. DOI: 10.1080/14686996.2022.2052181

33. Katsuki S., Matoba T., Koga J.I., Nakano K., Egashira K. Anti-in- flammatory nanomedicine for cardiovascular disease. Front. Cardiovasc. Med. 2017;4:87. DOI: 10.3389/fcvm.2017.00087

34. Vinhas R., Mendes R., Fernandes A.R., Baptista P.V. Nanoparticles-Emerging Potential for Managing Leukemia and Lymphoma. Front. Bioeng Biotechnol. 2017;5:79. DOI: 10.3389/fbioe.2017.00079

35. Pascual-Gil S., Simón -Yarza T., Garbayo E., Prósper F., BlancoPrieto M.J. Cytokine -loaded PLGA and PEG-PLGA microparticles showed similar heart regeneration in a rat myocardial infarction model. Int. J. Pharm. 2017;523(2):531–533. DOI: 10.1016/j.ijpharm.2016.11.022

36. Raphey V.R., Henna T.K., Nivitha K.P., Mufeedha P., Sabu C., Pramod K. Advanced biomedical applications of carbon nanotube. Mater Sci. Eng. C Mater Biol. Appl. 2019;100:616–630. DOI: 10.1016/j.msec.2019.03.043

37. Noon W.H., Kong Y., Ma J. Molecular dynamics analysis of a buckyball–antibody complex. Proc. Natl. Acad. Sci. U S A. 2002; 99(2):6466–70. DOI: 10.1073/pnas.022532599

38. Lai C., Lia L., Luoa B., Shena J., Shaoa J. Current advances and prospects in carbon nanomaterials-based drug delivery systems for cancer therapy. Curr. Med. Chem. 2022. DOI: 10.2174/0929867329666220821195353

39. Yañez-Aulestia A., Gupta N.K., Hernández M., Osorio-Toribio G., Sánchez-González E., Guzmán-Vargas A., Rivera J.L., Ibarra I.A., Lima E. Gold nanoparticles: current and upcoming biomedical applications in sensing, drug and gene delivery. Chem. Commun. (Camb). 2022;58(78):10886–10895. DOI: 10.1039/d2cc04826d

40. Sakthi Devi R., Girigoswami A., Siddharth M., Girigoswami K. Applications of Gold and Silver Nanoparticles in Theranostics. Appl. Biochem. Biotechnol. 2022;194(9):4187–4219. DOI: 10.1007/s12010-022-03963-z

41. Ahmad F., Salem-Bekhit M.M., Khan F., Alshehri S., Khan A., Ghoneim M.M., Wu H.F., Taha E.I., Elbagory I. Unique properties of surface-functionalized nanoparticles for bio-application: functionalization mechanisms and importance in application. Nanomaterials (Basel). 2022;12(8):1333. DOI: 10.3390/nano12081333

42. Shepherd S.J., Issadore D., Mitchell M.J. Microfl uidic formulation of nanoparticles for biomedical applications. Biomaterials. 2021;274:120826. DOI: 10.1016/j.biomaterials.2021.120826

43. Morgan M.T., Carnahan M.A., Finkelstein S., Prata C.A., Degoricija L., Lee S.J., Grinstaff M.W. Dendritic supramolecular assemblies for drug delivery. Chem. Commun. (Camb). 2005;(34):4309– 11. DOI: 10.1039/b502411k

44. Namdari M., Cheraghi M., Negahdari B., Eatemadi A., Daraee H. Recent advances in magnetoliposome for heart drug delivery. Artif. Cells Nanomed. Biotechnol. 2017;45(6):1–7. DOI: 10.1080/21691401.2017.1299159

45. Somasuntharam I., Yehl K., Carroll S.L., Maxwell J.T., Martinez M.D., Che P.L., Brown M.E., Salaita K., Davis M.E. Knockdown of TNF-α by DNAzyme gold nanoparticles as an anti-infl ammatory therapy for myocardial infarction. Biomaterials. 2016;83:12–22. DOI: 10.1016/j.biomaterials.2015.12.022

46. Zhu K., Wu M., Lai H., Guo C., Li J., Wang Y., Chen Y., Wang C., Shi J. Nanoparticle-enhanced generation of gene-transfected mesenchymal stem cells for in vivo cardiac repair. Biomaterials. 2016;74:188–99. DOI: 10.1016/j.biomaterials.2015.10.010

47. Takakura Y., Takahashi Y. Strategies for persistent retention of macromolecules and nanoparticles in the blood circulation. J. Control. Release. 2022;350:486–493. DOI: 10.1016/j.jconrel.2022.05.063

48. Evers M.J.W., Du W., Yang Q., Kooijmans S.A.A., Vink A., van Steenbergen M., Vader P., de Jager S.C.A., Fuchs SA., Mastrobattista E., Sluijter J.P.G., Lei Z., Schiffelers R. Delivery of modifi ed mRNA to damaged myocardium by systemic administration of lipid nanoparticles. J. Control. Release. 2022;343:207–216. DOI: 10.1016/j.jconrel.2022.01.027

49. Asanuma H., Sanada S., Yoshitomi T., Sasaki H., Takahama H., Ihara M., Takahama H., Shinozaki Y., Mori H., Asakura M., Nakano A., Sugimachi M., Asano Y., Minamino T., Takashima S., Nagasaki Y., Kitakaze M. Novel synthesized radical-containing nanoparticles limit infarct size following ischemia and reperfusion in canine hearts. Cardiovasc. Drugs Ther. 2017;31(5–6):501–510. DOI: 10.1007/s10557–017–6758–6

50. Allijn I.E., Czarny B.M.S., Wang X., Chong S.Y., Weiler M., da Silva A.E., Metselaar J.M., Lam C.S.P., Pastorin G., de Kleijn D.P.V., Storm G., Wang J.W., Schiffelers R.M. Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction. J. Control Release. 2017;247:127–133. DOI: 10.1016/j.jconrel.2016.12.042

51. Paulis L.E., Geelen T., Kuhlmann M.T., Coolen B.F., Schäfers M., Nicolay K., Strijkers G.J. Distribution of lipid-based nanoparticles to infarcted myocardium with potential application for MRI-monitored drug delivery. J. Control. Release. 2012;162(2):276–85. DOI: 10.1016/j.jconrel.2012.06.035

52. Díez-Pascual A.M. Surface engineering of nanomaterials with polymers, biomolecules, and small ligands for nanomedicine. Materials (Basel). 2022;15(9):3251. DOI: 10.3390/ma15093251

53. Anselmo A.C., Mitragotri S. Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles. J. Control. Release. 2014;190:531–41. DOI: 10.1016/j.jconrel.2014.03.050

54. Ferreira M.P., Ranjan S., Correia A.M., Mäkilä E.M., Kinnunen S.M., Zhang H., Shahbazi M.A., Almeida P.V., Salonen J.J., Ruskoaho H.J., Airaksinen A.J., Hirvonen J.T., Santos H.A. In vitro and in vivo assessment of heart-homing porous silicon nanoparticles. Biomaterials. 2016;94:93–104. DOI: 10.1016/j.biomaterials.2016.03.046

55. Jaiswal S., Rajnikanth P.S., Thakur S., Deepak P., Anand S. A Review on novel ligand targeted delivery for cardiovascular disorder. Curr. Drug. Deliv. 2021;18(8):1094–1104. DOI: 10.2174/1567201818666210301095046

56. Ruckenstein E., Li Z.F. Surface modifi cation and functionalization through the self-assembled monolayer and graft polymerization. Adv. Colloid. Interface Sci. 2005;113(1):43–63. DOI: 10.1016/j.cis.2004.07.009

57. Torchilin V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug. Discov. 2014;13(11):813–27. DOI: 10.1038/nrd4333

58. Verma V.K., Kamaraju S.R., Kancherla R., Kona L.K., Beevi S.S., Debnath T., Usha S.P., Vadapalli R., Arbab A.S., Chelluri L.K. Fluorescent magnetic iron oxide nanoparticles for cardiac precursor cell selection from stromal vascular fraction and optimization for magnetic resonance imaging. Int. J. Nanomedicine. 2015;10:711–26. DOI: 10.2147/IJN.S75445

59. Peet C., Ivetic A., Bromage D.I., Shah A.M. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc. Res. 2020;116(6):1101–1112. DOI: 10.1093/cvr/cvz336

60. Fan C., Oduk Y., Zhao M., Lou X., Tang Y., Pretorius D., Valarmathi M.T., Walcott G.P., Yang J., Menasche P., Krishnamurthy P., Zhu W., Zhang J. Myocardial protection by nanomaterials formulated with CHIR99021 and FGF1. JCI Insight. 2020;5(12):e132796. DOI: 10.1172/jci.insight.132796

61. Du J., Zheng L., Gao P., Yang H., Yang W.J., Guo F., Liang R., Feng M., Wang Z., Zhang Z., Bai L., Bu Y., Xing S., Zheng W., Wang X., Quan L., Hu X., Wu H., Chen Z., Chen L., Wei K., Zhang Z., Zhu X., Zhang X., Tu Q., Zhao S.M., Lei X., Xiong J.W. A small-molecule cocktail promotes mammalian cardiomyocyte proliferation and heart regeneration. Cell. Stem. Cell. 2022;29(4):545– 558.e13. DOI: 10.1016/j.stem.2022.03.009

62. Molavi B., Chen J., Mehta J.L. Cardioprotective effects of rosiglitazone are associated with selective overexpression of type 2 angiotensin receptors and inhibition of p42/44 MAPK. Am. J. Physiol. Heart Circ. Physiol. 2006;291(2):H687–93. DOI: 10.1152/ajpheart.00926.2005

63. Yang B.C., Phillips M.I., Ambuehl P.E., Shen L.P., Mehta P., Mehta J.L. Increase in angiotensin II type 1 receptor expression immediately after ischemia-reperfusion in isolated rat hearts. Circulation. 1997;96(3):922–6. DOI: 10.1161/01.cir.96.3.922

64. Dvir T., Bauer M., Schroeder A., Tsui J.H., Anderson D.G., Langer R., Liao R., Kohane D.S. Nanoparticles targeting the infarcted heart. Nano Lett. 2011; 1(10):4411–4. DOI: 10.1021/nl2025882

65. Xue X., Shi X., Dong H., You S., Cao H., Wang K., Wen Y., Shi D., He B., Li Y. Delivery of microRNA-1 inhibitor by dendrimer-based nanovector: An early targeting therapy for myocardial infarction in mice. Nanomedicine. 2018;14(2):619–631. DOI: 10.1016/j.nano.2017.12.004

66. Gasc J.M., Shanmugam S., Sibony M., Corvol P. Tissue-specifi c expression of type 1 angiotensin II receptor subtypes. An in situ hybridization study. Hypertension. 1994;24(5):531–7. DOI: 10.1161/01.hyp.24.5.531

67. McGuire M.J., Samli K.N., Johnston S.A., Brown K.C. In vitro selection of a peptide with high selectivity for cardiomyocytes in vivo. J. Mol. Biol. 2004;342(1):171–82. DOI: 10.1016/j.jmb.2004.06.029

68. Ikuta T., Sogawa N., Ariga H., Ikemura T., Matsumoto K. Structural analysis of mouse tenascin-X: evolutionary aspects of reduplication of FNIII repeats in the tenascin gene family. Gene. 1998;217(1–2):1– 13. DOI: 10.1016/s0378-1119(98)00355-2

69. Hu B., Boakye-Yiadom KO., Yu W., Yuan Z.W., Ho W., Xu X., Zhang X.Q. Nanomedicine Approaches for Advanced Diagnosis and Treatment of therosclerosis and Related Ischemic Diseases. Adv. Healthc Mater. 2020;9(16):e2000336. DOI: 10.1002/adhm.202000336

70. Li R., He Y., Zhang S., Qin J., Wang J. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm. Sin. B. 2018;8(1):14–22. DOI: 10.1016/j.apsb.2017.11.009

71. Radecke C.E., Warrick A.E., Singh G.D., Rogers J.H., Simon S.I., Armstrong E.J. Coronary artery endothelial cells and microparticles increase expression of VCAM-1 in myocardial infarction. Thromb. Haemost. 2015;113(3):605–16. DOI: 10.1160/TH14-02-0151

72. Wei Y., Zhu M., Li S., Hong T., Guo X., Li Y., Liu Y., Hou X., He B. Engineered biomimetic nanoplatform protects the myocardium against ischemia/reperfusion injury by inhibiting pyroptosis. ACS App. Mater. Interfaces. 2021;13(29):33756–33766. DOI: 10.1021/acsami.1c03421.

73. Neves K.B., Rios F.J., Sevilla-Montero J., Montezano A.C., Touyz R.M. Exosomes and the cardiovascular system: role in car diovas cular health and disease. J. Physiol. 2022. DOI: 10.1113/JP282054

74. Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Exosome–mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9(6):654–9. DOI: 10.1038/ncb1596

75. Xu R., Greening D.W., Zhu H.J., Takahashi N., Simpson R.J. Extracellular vesicle isolation and characterization: toward clinical application. J. Clin. Invest. 2016;126(4):1152–62. DOI: 10.1172/JCI81129

76. Liu S., Chen X., Bao L., Liu T., Yuan P., Yang X., Qiu X., Gooding J.J., Bai Y., Xiao J., Pu F., Jin Y. Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles. Nat. Biomed. Eng. 2020;4(11):1063–1075. DOI: 10.1038/s41551–020–00637–1

77. Ferreira M.P.A., Ranjan S., Kinnunen S., Correia A., Talman V., Mäkilä E., Barrios-Lopez B., Kemell M., Balasubramanian V., Salonen J., Hirvonen J., Ruskoaho H., Airaksinen A.J., Santos H.A. Drug-loaded multifunctional nanoparticles targeted to the endocardial layer of the injured heart modulate hypertrophic signaling. Small. 2017;13(33). DOI: 10.1002/smll.201701276

78. Yu J., Li W., Yu D. Atrial natriuretic peptide modifi ed oleate adenosine prodrug lipid nanocarriers for the treatment of myocardial infarction: in vitro and in vivo evaluation. Drug. Des. Devel. Ther. 2018;12:1697–1706. DOI: 10.2147/DDDT.S166749

79. Jamasbi J., Ayabe K., Goto S., Nieswandt B., Peter K., Siess W. Platelet receptors as therapeutic targets: past, present and future. Thromb. Haemost. 2017;117(7):1249–1257. DOI: 10.1160/TH16-12-0911

80. Hernández-Reséndiz S., Muñoz-Vega M., Contreras W.E., Crespo-Avilan G.E., Rodriguez-Montesinos J., Arias-Carrión O., Pérez-Méndez O., Boisvert W.A., Preissner K.T., Cabrera-Fuentes H.A. Responses of endothelial cells towards ischemic conditioning following acute myocardial infarction. Cond. Med. 2018;1(5):247–258.

81. Li F., Liu D., Liu M., Ji Q., Zhang B., Mei Q., Cheng Y., Zhou S. Tregs biomimetic nanoparticle to reprogram infl ammatory and redox microenvironment in infarct tissue to treat myocardial ischemia reperfusion injury in mice. J. Nanobiotechnology. 2022;20(1):251. DOI: 10.1186/s12951-022-01445-2

82. Zhou T., Yang X., Wang T., Xu M., Huang Z., Yu R., Jiang Y., Zhou Y., Shi J. Platelet–Membrane–Encapsulated Carvedilol with Improved Targeting Ability for Relieving Myocardial Ischemia–Reperfusion Injury. Membranes (Basel). 2022;12(6):605. DOI: 10.3390/membranes12060605

83. Tang J., Su T., Huang K., Dinh P.U., Wang Z., Vandergriff A., Hensley M.T., Cores J., Allen T., Li T., Sproul E., Mihalko E., Lobo L.J., Ruterbories L., Lynch A., Brown A., Caranasos T.G., Shen D., Stouffer G.A., Gu Z., Zhang J., Cheng K. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nat. Biomed. Eng. 2018;2:17–26. DOI: 10.1038/s41551-017-0182-x

84. Valikeserlis I., Athanasiou A.A., Stakos D. Cellular mechanisms and pathways in myocardial reperfusion injury. Coron. Artery Dis. 2021;32(6):567–577. DOI: 10.1097/MCA.0000000000000997

85. Konegawa Y., Kuwahara T., Jo J.I., Murata K., Takeda T., Ikeda T., Minatoya K., Masumoto H., Tabata Y. Pioglitazone-incorporated microspheres targeting macrophage polarization alleviates cardiac dysfunction after myocardial infarction. Eur. J. Cardiothorac. Surg. 2022;62(5):ezac414. DOI: 10.1093/ejcts/ezac414

86. Nakano Y., Matoba T., Tokutome M., Funamoto D., Katsuki S., Ikeda G., Nagaoka K., Ishikita A., Nakano K., Koga J., Sunagawa K., Egashira K. Nanoparticle-mediated delivery of irbesartan induces cardioprotection from myocardial ischemia-reperfusion injury by antagonizing monocyte-mediated infl ammation. Sci. Rep. 2016;6:29601. DOI: 10.1038/srep29601

87. Tokutome M., Matoba T., Nakano Y., Okahara A., Fujiwara M., Koga J.I., Nakano K., Tsutsui H., Egashira K. Peroxisome proliferator-activated receptor-gamma targeting nanomedicine promotes cardiac healing after acute myocardial infarction by skewing monocyte/ macrophage polarization in preclinical animal models. Cardiovasc. Res. 2019;115(2):419–431. DOI: 10.1093/cvr/cvy200

88. Swirski F.K., Nahrendorf M., Etzrodt M., Wildgruber M., Cortez-Retamozo V., Panizzi P., Figueiredo J.L., Kohler R.H., Chudnovskiy A., Waterman P., Aikawa E., Mempel T.R., Libby P., Weissleder R., Pittet M.J. Identifi cation of splenic reservoir monocytes and their deployment to infl ammatory sites. Science. 2009;325(5940):612–6. DOI: 10.1126/science.1175202

89. Wang J., Seo M.J., Deci M.B., Weil B.R., Canty J.M., Nguyen J. Effect of CCR2 inhibitor-loaded lipid micelles on infl ammatory cell migration and cardiac function after myocardial infarction. Int. J. Nanomedicine. 2018;13:6441–6451. DOI: 10.2147/IJN.S178650

90. Puré E., Cuff C.A. A crucial role for CD44 in infl ammation. Trends Mol. Med. 2001;7(5):213–21. DOI: 10.1016/s1471-4914(01)01963-3

91. Glucksam–Galnoy Y., Zor T., Margalit R. Hyaluronan-modifi ed and regular multilamellar liposomes provide sub-cellular targeting to macrophages, without eliciting a pro-infl ammatory response. J. Control. Release. 2012;160(2):388–93. DOI: 10.1016/j.jconrel.2011.10.008

92. Ben-Mordechai T., Kain D., Holbova R., Landa N., Levin L.P., Elron-Gross I., Glucksam-Galnoy Y., Feinberg M.S., Margalit R., Leor J. Targeting and modulating infarct macrophages with hemin formulated in designed lipid-based particles improves cardiac remodeling and function. J. Control Release. 2017;257:21–31. DOI: 10.1016/j.jconrel.2017.01.001

93. Solovarov I.S., Khasnatinov M.A., Liapunova N.A., Kondratov I.G., Danchinova G.A. Development of DNA aptamer selection approach based on membrane ultrafi ltration of aptamer/target complex. Acta Biomedica Scientifi ca. 2022;7(6):119– 127. (In Russian) DOI: 10.29413/ABS.2022–7.6.12

94. Huang S.S., Lee K.J., Chen H.C., Prajnamitra R.P., Hsu C.H., Jian C.B., Yu X.E., Chueh D.Y., Kuo C.W., Chiang T.C., Choong O.K., Huang S.C., Beh C.Y., Chen L.L., Lai J.J., Chen P., Kamp T.J., Tien Y.W., Lee H.M., Hsieh P.C. Immune cell shuttle for precise delivery of nanotherapeutics for heart disease and cancer. Sci. Adv. 2021;7(17):eabf2400. DOI: 10.1126/sciadv.abf2400

95. Wong D.J., Park D.D., Park S.S., Haller C.A., Chen J., Dai E., Liu L., Mandhapati A.R., Eradi P., Dhakal B., Wever W.J., Hanes M., Sun L., Cummings R.D., Chaikof E.L. A PSGL–1 glycomimetic reduces thrombus burden without affecting hemostasis. Blood. 2021;138(13):1182–1193. DOI: 10.1182/blood.2020009428

96. Sarma J., Laan C.A., Alam S., Jha A., Fox K.A. Dransfi eld I. Increased platelet binding to circulating monocytes in acute coronary syndromes. Circulation. 2002;105(18):2166–71. DOI: 10.1161/01.cir.0000015700.27754.6f

97. An G., Wang H., Tang R., Yago T., McDaniel J.M., McGee S., Huo Y., Xia L. P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation. 2008;117(25):3227–37. DOI: 10.1161/CIRCULATIONAHA.108.771048

98. Huo Y., Schober A., Forlow S.B., Smith D.F., Hyman M.C., Jung S., Littman D.R., Weber C., Ley K. Circulating activated platelets exacerbate atherosclerosis in mice defi cient in apolipoprotein E. Nat. Med. 2003;9(1):61–7. DOI: 10.1038/nm810

99. Cheng B., Toh E.K., Chen K.H., Chang Y.C., Hu C.J., Wu H.C., Chau L.Y., Chen P., Hsieh P.C. Biomimicking platelet-monocyte interactions as a novel targeting strategy for heart healing. Adv. Healthc Mater. 2016;5(20):2686–2697. DOI: 10.1002/adhm.201600724

100. Liu Y., Gao XM., Fang L., Jennings N.L., Su Y., Q X., Samson A.L., Kiriazis H., Wang X.F., Shan L., Sturgeon S.A., Medcalf R.L., Jackson S.P., Dart A.M., Du X.J. Novel role of platelets in mediating infl ammatory responses and ventricular rupture or remodeling following myocardial infarction. Arterioscler Thromb Vasc Biol. 2011;31(4):834–41. DOI: 10.1161/ATVBAHA.110.220467

101. Tan H., Song Y., Chen J., Zhang N., Wang Q., Li Q., Gao J., Yang H., Dong Z., Weng X., Wang Z., Sun D., Yakufu W., Pang Z., Huang Z., Ge J. Platelet-like fusogenic liposome-mediated targeting delivery of mir-21 improves myocardial remodeling by reprogramming macrophages post myocardial ischemia-reperfusion injury. Adv. Sci. (Weinh). 2021;8(15):e2100787. DOI: 10.1002/advs.202100787

102. Schanze N., Bode C., Duerschmied D. Platelet contributions to myocardial ischemia/reperfusion injury. Front Immunol. 2019;10:1260. DOI: 10.3389/fimmu.2019.01260

103. Keykhaei M., Ashraf H., Rashedi S., Farrokhpour H., Heidari B., Zokaei S., Bagheri S., Foroumadi R., Asgarian S., Amirian A., Saleh S.K., James S. Differences in the 2020 ESC Versus 2015 ESC and 2014 ACC/AHA Guidelines on the management of acute coronary syndromes in patients presenting without persistent st-segment elevation. Curr. Atheroscler. Rep. 2021;23(12):77. DOI: 10.1007/s11883–021–00976–7

104. Xie S., Mo C., Cao W., Xie S., Li S., Zhang Z., Li X. Bacteria-propelled microtubular motors for effi cient penetration and targeting delivery of thrombolytic agents. Acta Biomater. 2022;142:49–59. DOI: 10.1016/j.actbio.2022.02.008

105. Juenet M., Aid-Launais R., Li B., Berger A., Aerts J., Ollivier V., Nicoletti A., Letourneur D., Chauvierre C. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials. 2018;156:204–216. DOI: 10.1016/j.biomaterials.2017.11.047

106. Chen Y., Zhao Y., Chen W., Xie L., Zhao Z.A., Yang J., Chen Y., Lei W., Shen Z. MicroRNA-133 overexpression promotes the therapeutic effi cacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res. Ther. 2017;8(1):268. DOI: 10.1186/s13287-017-0722-z

107. Yu B.T., Yu N., Wang Y., Zhang H., Wan K., Sun X., Zhang C.S. Role of miR-133a in regulating TGF-β1 signaling pathway in myocardial fi brosis after acute myocardial infarction in rats. Eur. Rev. Med. Pharmacol. Sci. 2019;23(19):8588–8597. DOI: 10.26355/eurrev_201910_19175

108. Zhang X.G., Wang L.Q., Guan H.L. Investigating the expression of miRNA-133 in animal models of myocardial infarction and its effect on cardiac function. Eur. Rev. Med. Pharmacol. Sci. 2019;23(13):5934–5940. DOI: 10.26355/eurrev_201907_18338

109. Sun B., Liu S., Hao R., Dong X., Fu L., Han B. RGD-PEG-PLA Delivers MiR-133 to Infarct Lesions of Acute Myocardial Infarction Model Rats for Cardiac Protection. Pharmaceutics. 2020;12(6):575. DOI: 10.3390/pharmaceutics12060575

110. Duro-Castano A., Gallon E., Decker C., Vicent M.J. Modulating angiogenesis with integrin-targeted nanomedicines. Adv. Drug. Deliv. Rev. 2017;119:101–119. DOI: 10.1016/j.addr.2017.05.008

111. Halestrap A.P. Mitochondrial permeability: dual role for the ADP/ ATP translocator? Nature. 2004;430(7003):1. DOI: 10.1038/nature02816

112. Huo J., Lu S., Kwong J.Q., Bround M.J., Grimes K.M., Sargent M.A., Brown M.E., Davis M.E., Bers D.M., Molkentin J.D. MCUb induction protects the heart from postischemic remodeling. Circ. Res. 2020;127(3):379–390. DOI: 10.1161/CIRCRESAHA.119.316369

113. Ikeda G., Matoba T., Nakano Y., Nagaoka K., Ishikita A., Nakano K., Funamoto D., Sunagawa K., Egashira K. Nanoparticle-mediated targeting of cyclosporine a enhances cardioprotection against ischemia-reperfusion injury through inhibition of mitochondrial permeability transition pore opening. Sci. Rep. 2016;6:20467. DOI: 10.1038/srep20467

114. Zhang C.X., Cheng Y., Liu D.Z., Liu M., Cui H., Zhang B.L., Mei Q.B., Zhou S.Y. Mitochondria-targeted cyclosporin A deli very system to treat myocardial ischemia reperfusion injury of rats. J. Nanobiotechnology. 2019;17(1):18. DOI: 10.1186/s12951-019-0451-9

115. Zhao K., Zhao G.M., Wu D., Soong Y., Birk A.V., Schiller P.W., Szeto H.H. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death and reperfusion injury. J. Biol. Chem. 2004;279(33):34682– 90. DOI: 10.1074/jbc.M402999200

116. Birk A.V., Liu S., Soong Y., Mills W., Singh P., Warren J.D., Seshan S.V., Pardee J.D., Szeto H.H. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J. Am. Soc. Nephrol. 2013;24(8):1250–61. DOI: 10.1681/ASN.2012121216

117. Yuan Y., Wang Y.Y., Liu X., Luo B., Zhang L., Zheng F., Li X.Y., Guo L.Y., Wang L., Jiang M., Pan Y.M., Yan Y.W., Yang J.Y., Chen S.Y., Wang J.N., Tang J.M. KPC1 alleviates hypoxia/reoxygenation-induced apoptosis in rat cardiomyocyte cells though BAX degradation. J. Cell Physiol. 2019;234(12):22921–22934. DOI: 10.1002/jcp.28854

118. Ishikita A., Matoba T., Ikeda G., Koga J., Mao Y., Nakano K., Takeuchi O., Sadoshima J., Egashira K. Nanoparticle-mediated delivery of mitochondrial division inhibitor 1 to the myocardium protects the heart from ischemia-reperfusion injury through inhibition of mitochondria outer membrane permeabilization: a new therapeutic modality for acute myocardial infarction. J. Am. Heart Assoc. 2016;5(7):e003872. DOI: 10.1161/JAHA.116.003872

119. Zhou L., Zuo Z., Chow M.S. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics and clinical use. J. Clin. Pharmacol. 2005;45(12):1345–59. DOI: 10.1177/0091270005282630

120. Zhang S., Li J., Hu S., Wu F., Zhang X. Triphenylphosphonium and D-α-tocopheryl polyethylene glycol 1000 succinate-modifed, tanshinone IIA-loaded lipid-polymeric nanocarriers for the targeted therapy of myocardial infarction. Int. J. Nanomedicine. 2018;13:4045–4057. DOI: 10.2147/IJN.S165590

121. Wang J., Zhang S., Di L. Acute myocardial infarction therapy: in vitro and in vivo evaluation of atrial natriuretic peptide and triphenylphosphonium dual ligands modifi ed, baicalin-loaded nanoparticulate system. Drug. Deliv. 2021;28(1):2198–2204. DOI: 10.1080/10717544.2021.1989086.

122. Wang X., He F., Liao Y., Song X., Zhang M., Qu L., Luo T., Zhou S., Ling Y., Guo J., Chen A. Baicalin pretreatment protects against myocardial ischemia/reperfusion injury by inhibiting mitochondrial damage-mediated apoptosis. Int. J. Cardiol. 2013;168(4):4343–5. DOI: 10.1016/j.ijcard.2013.05.077

123. Chen Y., Jia L., Zhu G., Wang W., Geng M., Lu H., Zhang Y., Zhou M., Zhang F., Cheng X. Sortase A-mediated cyclization of novel polycyclic RGD peptides for ανβ3 integrin targeting. Bioorg. Med. Chem. Lett. 2022;73:128888. DOI: 10.1016/j.bmcl.2022.128888

124. Makowski M.R., Ebersberger U., Nekolla S., Schwaiger M. In vivo molecular imaging of angiogenesis, targeting alphavbeta3 integrin expression, in a patient after acute myocardial infarction. Eur. Heart J. 2008;29(18):2201. DOI: 10.1093/eurheartj/ehn129

125. Yan J., Guo J., Wang Y., Xing X., Zhang X., Zhang G., Dong Z. Acute myocardial infarction therapy using calycosin and tanshinone co-loaded; mitochondrion-targeted tetrapeptide and cyclic arginyl-glycyl-aspartic acid peptide co-modifi ed lipid-polymer hybrid nano-system: preparation, characterization, and anti myocardial infarction activity assessment. Drug Deliv. 2022;29(1):2815– 2823. DOI: 10.1080/10717544.2022.2118401

126. Fan K., Xi J., Fan L., Wang P., Zhu C., Tang Y., Xu X., Liang M., Jiang B., Yan X., Gao L. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018;9(1):1440. DOI: 10.1038/s41467-018-03903-8

127. Singh N., Savanur M.A., Srivastava S., D'Silva P., Mugesh G. A Redox Modulatory Mn3 O4 Nanozyme with Multi-Enzyme Activity Provides Effi cient Cytoprotection to Human Cells in a Parkinson's Disease Model. Angew. Chem. Int. Ed. Engl. 2017;56(45):14267– 14271. DOI: 10.1002/anie.201708573

128. Yao J., Cheng Y., Zhou M., Zhao S., Lin S., Wang X., Wu J., Li S., Wei H. ROS scavenging Mn3O4 nanozymes for in vivo anti-in- fl ammation. Chem. Sci. 2018;9(11):2927–2933. DOI: 10.1039/c7sc05476a

129. Zhang Y., Khalique A., Du X., Gao Z., Wu J., Zhang X., Zhang R., Sun Z., Liu Q., Xu Z., Midgley A.C., Wang L., Yan X., Zhuang J., Kong D., Huang X. Biomimetic design of mitochondria-targeted hybrid nanozymes as superoxide scavengers. Adv. Mater. 2021;33(9):e2006570. DOI: 10.1002/adma.202006570

130. Huang Y., Ren J., Qu X. Nanozymes: Classifi cation, Catalytic Mechanisms, Activity Regulation and Applications. Chem. Rev. 2019;119(6):4357–4412. DOI: 10.1021/acs.chemrev.8b00672

131. Spinale F.G. Myocardial matrix remodeling and the matrix metalloproteinases: infl uence on cardiac form and function. Physiol. Rev. 2007;87(4):1285–342. DOI: 10.1152/physrev.00012.2007

132. Nguyen M.M., Carlini A.S., Chien M.P., Sonnenberg S., Luo C., Braden R.L., Osborn K.G., Li Y., Gianneschi N.C., Christman K.L. Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv. Mater. 2015; 27(37):5547–52. DOI: 10.1002/adma.201502003

133. Bock-Marquette I., Saxena A., White M.D., Dimaio J.M., Srivastava D. Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature. 2004;432(7016):466–72. DOI: 10.1038/nature03000

134. Smart N., Risebro C.A., Melville A.A., Moses K., Schwartz R.J., Chien K.R., Riley P.R. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature. 2007;445(7124):177–82. DOI: 10.1038/nature05383

135. Huang Z., Song Y., Pang Z., Zhang B., Yang H., Shi H., Chen J., Gong H., Qian J., Ge J. Targeted delivery of thymosin beta 4 to the injured myocardium using CREKA-conjugated nanoparticles. Int. J. Nanomedicine. 2017;12:3023–3036. DOI: 10.2147/IJN.S131949

136. Malchikova S.V., Trushnikova N.S., Kazakovtseva M.V., Maksimchuk-Kolobova N.S. Cardiovascular risk factors, clinical manifestations and management of myocardial infarction in elderly and longliving patients depending on geriatric status. Cardiovascular Therapy and Prevention. 2023;22(2):3376. (In Russian). DOI: 10.15829/1728-8800-2023-3376.

137. Shiozaki A.A., Senra T., Morikawa A.T., Deus D.F., Paladino-Filho A.T., Pinto I.M., Maranhão R.C. Treatment of patients with aortic atherosclerotic disease with paclitaxel-associated lipid nanoparticles. Clinics (Sao Paulo). 2016;71(8):435–9. DOI: 10.6061/clinics/2016(08)05

138. Ruiz J., Kouiavskaia D., Migliorini M., Robinson S., Saenko E.L., Gorlatova N., Li D., Lawrence D., Hyman B.T., Weisgraber K.H., Strickland D.K. The apoE isoform binding properties of the VLDL receptor reveal marked differences from LRP and the LDL receptor. J. Lipid Res. 2005;46(8):1721–31. DOI: 10.1194/jlr.M500114–JLR200

139. Maranhão R.C., Tavares E.R., Padoveze A.F., Valduga C.J., Rodrigues D.G., Pereira M.D. Paclitaxel associated with cholesterol-rich nanoemulsions promotes atherosclerosis regression in the rabbit. Atherosclerosis. 2008;197(2):959–66. DOI: 10.1016/j.atherosclerosis.2007.12.051

140. Romero M., Suárez-de-Lezo J., Herrera C., Pan M., López-Aguilera J., Suárez-de-Lezo J Jr., Baeza-Garzón F., Hidalgo-Lesmes F.J., Fer nández-López O., Martínez–Atienza J., Cebrián E., Mar tínPalanco V., Jiménez-Moreno R., Gutiérrez-Fernández R., Nogueras S., Carmona M.D., Ojeda S., Cuende N., Mata R. Randomised, double-blind, placebo-controlled clinical trial for evaluating the effi cacy of intracoronary injection of autologous bone marrow mononuclear cells in the improvement of the ventricular function in patients with idiopathic dilated myocardiopathy: a study protocol. BMC Cardiovasc. Disord. 2019;19(1):203. DOI: 10.1186/s12872–019–1182–4

141. Attar A., Nouri F., Yazdanshenas A., Hessami K., Vosough M., Abdi-Ardekani A., Izadpanah P., Ramzi M., Kojouri J., Pouladfar G., Monabati A. Single vs. double intracoronary injection of mesenchymal stromal cell after acute myocardial infarction: the study protocol from a randomized clinical trial: BOOSTER–TAHA7 trial. Trials. 2022;23(1):293. DOI: 10.1186/s13063-022-06276-y

142. Oommen S., Cantero Peral S., Qureshi M.Y., Holst K.A., Burkhart H.M., Hathcock M.A., Kremers W.K., Brandt E.B., Larsen B.T., Dearani J.A., Edwards B.S., Maleszewski J.J., Nelson T.J. Wanek Program Pre-Clinical Pipeline. Autologous Umbilical Cord Blood-Derived Mononuclear Cell Therapy Promotes Cardiac Proliferation and Adaptation in a Porcine Model of Right Ventricle Pressure Overload. Cell Transplant. 2022;31:9636897221120434. DOI: 10.1177/09636897221120434

143. Assuncao-Jr A.N., Rochitte C.E., Kwong R.Y., Wolff-Gowdak L.H., Krieger J.E., Jerosch-Herold M. Bone marrow cells improve coronary fl ow reserve in ischemic nonrevascularized myocardium: a MiHeart/IHD quantitative perfusion CMR substudy. JACC Cardiovasc. Imaging. 2022;15(5):812–824. DOI: 10.1016/j.jcmg.2021.12.011

144. Kharlamov A.N., Tyurnina A.E., Veselova V.S., Kovtun O.P., Shur V.Y., Gabinsky J.L. Silica-gold nanoparticles for atheroprotective management of plaques: results of the NANOM-FIM trial. Nanoscale. 2015;7(17):8003–15. DOI: 10.1039/c5nr01050k


Review

For citations:


Kidenko V.A., Metova M.M., Gabrielyan E.Yu., Trusov Yu.A., Melikhova A.D., Muslimova E.P., Sedmova Ya.V., Khabibullina K.R., Malikova E.V., Valiullina L.A., Bagautdinova D.D., Petrakova A.V., Terekhina K.S. Nanoparticles for targeted drug delivery in modern cardiology. Clinical Medicine (Russian Journal). 2023;101(9-10):454-466. (In Russ.) https://doi.org/10.30629/0023-2149-2023-101-9-10-454-466

Views: 732


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)