Preview

Клиническая медицина

Расширенный поиск

Постковидные нейрокогнитивные расстройства

https://doi.org/10.30629/0023-2149-2023-101-6-265-274

Аннотация

В статье рассматриваются причины и механизмы развития когнитивных нарушений у больных, перенесших COVID-19. Обзор научных публикаций последних лет показал, что нарушение функции центральной нервной системы является одним из ключевых признаков коронавирусной инфекции. Постковидный неврологический синдром отмечается у большинства больных. Авторы обобщили данные о проникновении вирусов в структуры головного мозга и изучили ведущие механизмы повреждения нервной системы, связанные с вирусной инфекцией. Предложены перспективные направления профилактики и лечения нейрокогнитивных нарушений, связанных с перенесенной коронавирусной инфекцией.

Об авторах

О. А. Сапроненкова
Филиал ФГБВОУ ВО Военно-медицинская академия им. С.М. Кирова в г. Москве
Россия

Сапроненкова Ольга Алексеевна— доцент кафедры терапии неотложных состояний.

107392, Москва



Е. А. Широков
Филиал ФГБВОУ ВО Военно-медицинская академия им. С.М. Кирова в г. Москве
Россия

Широков Евгений Алексеевич— профессор кафедры терапии неотложных состояний.

107392, Москва



Список литературы

1. Sieglera J.E., Abdalkaderb M., Michelc P., Nguyenb T. Therapeutic trends of cerebrovascular disease during the COVID-19 pandemic and future perspectives. J. Stroke. 2022;24(2):179-188. DOI: 10.5853/jos.2022.00843

2. Shirokov E. The relationship of changes in the planet's biosphere with the COVID-19 pandemic and the foundations of the physical theory of virus expansion. International Journal of Clinical and Experimental Medical Sciences. 2021;7(4):74-80. DOI: 10.11648/j.ijcems.20210704.11

3. Ступаков Г.П., Щербинина Н.В., Широков Е.А. Пандемия COVID-19 как следствие устойчивых изменений биосферы планеты. Клиническая медицина. 2022;100(6):261-267. DOI: 10.30629/0023-2149-2022-100-6-261-267

4. King A., Adams M., Carstens E., Lefkowitz E. Classification and nomenclature of viruses. In: Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier: San Diego. 2012:1326-1327.

5. Thye A.Y.-K., Law J.W.-F., Pusparajah P., Letchumanan V., Chan K.-G., Lee L.-H. Emerging SARS-CoV-2 variants of concern (VOCs): An impending global crisis. Biomedicines. 2021;9:1303. DOI: 10.3390/biomedicines9101303

6. Update on Omicron. [(accessed on 5 December 2021)]. Available online: https://www.who.int/news/item/28-11-2021-update-on-omicron

7. Nuzzo D., Cambula G., Bacile I. et al. Long-Term Brain Disorders in Post Covid-19 Neurological Syndrome (PCNS) Patient. Brain Sci. 2021;11(4):454. DOI: 10.3390/brainsci11040454. PMID: 33918426; PMCID: PMC8066611

8. Koyuncu O.O., Hogue I.B., Enquist L.W. Virus infections in the nervous system. Cell Host Microbe. 2013;13:379-393. DOI: 10.1016/j.chom.2013.03.010

9. Tipnis S.R., Hooper N.M., Hyde R. et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 2000;275:33238-33243. DOI: 10.1074/jbc.M002615200

10. McGavern S.S., Kang D.B. Illuminating viral infections in the nervous system. Nat. Rev. Immunol. 2011;11:318-329.

11. Koyuncu O.O., Hogue I.B., Enquist L.W. Virus infections in the nervous system. Cell Host. Microbe. 2013;13:379-393. DOI: 10.1016/j.chom.2013.03.010

12. Prüss H. Autoantibodies in neurological disease. Nature Rev. Immunol. 2021;21(12):798-813. DOI: 10.1038/s41577-021-00543-w

13. Kreye J.A Therapeutic Non-self-reactive SARS-CoV-2 Antibody Protects from Lung Pathology in a COVID-19 Hamster Model. Cell. 2020;183(4):1058-1069.e19. DOI: 10.1016/j.cell.2020.09.049

14. Góralczyk-Bińkowska A., Szmajda-Krygier D., Kozlowska E. The Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int. J. Mol. Sci. 2022;23(19):11245. DOI: 10.3390/ijms231911245.

15. Cai Q., Chen F., Wang T., Luo F., Liu X., Wu Q., He Q., Wang Z., Liu Y., Liu L. et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China. Diabetes Care. 2020;43:1392-1398. DOI: 10.2337/dc20-0576.

16. Fang L., Karakiulakis G., Roth M. Are Patients with Hypertension and Diabetes Mellitus at Increased Risk for COVID-19 Infection? Lancet Respir. Med. 2020;8:e21. DOI: 10.1016/S2213-2600(20)30116-8

17. Ikeda K., Kawakami K., Onimaru H., Okada Y., Yokota S., Koshiya N., Oku Y., Iizuka M., Koizumi H. The respiratory control mechanisms in the brainstem and spinal cord: integrative views of the neuroanatomy and neurophysiology. J. Physiol. Sci. 2017;67(1):45-62. DOI: 10.1007/s12576-016-0475-y

18. Циркин В.И. Нейрофизиология: физиология ЦНС. 2 ч. Часть 1, 2021.

19. Kulkarni P., Sakharkar A. Understanding the role of nACE2 in neurogenic hypertension among COVID-19 patients. Hypertens. Res. 2022;45(2):254-269. DOI: 10.1038/s41440-021-00800-4

20. Collantes M., Espiritu A. Anlacan and Roland Dominic G. Jamora Neurological Manifestations in COVID-19 Infection: A Systematic Review and Meta-Analysis. Can. J. Neurol. Sci. 2022;48(1):66-76.

21. Jackson C., Farzan M., Chen B. et al. Mechanisms of SARS-CoV-2 entry into cells. Virus-induced neuronal dysfunction and degeneration. Review Nat. Rev. Mol. Cell Biol. 2022;23(1):3-20. DOI: 10.1038/s41580-021-00418-x

22. Mori I. Transolfactory neuroinvasion by viruses threatens the human brain. Acta Virol. 2015;59:338-349.

23. Lochhead J.J., Thorne R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug. Deliv. Rev. 2012;64:614-628.

24. Lochhead J.J., Kellohen K.L., Ronaldson P.T., Davis T.P. Distribution of insulin in trigeminal nerve and brain after intranasal administration. Sci. Rep. 2019;9:2621.

25. Bohmwald K., Espinoza J.A., Gonzalez P.A., Bueno S.M., Riedel C.A., Kalergis A.M. Central nervous system alterations caused by infection with the human respiratory syncytial virus. Rev. Med. Virol. 2014;24:407-419.

26. Driessen A.K., Farrell M.J., Mazzone S.B., McGovern A.E. Multiple neural circuits mediating airway sensations: recent advances in the neurobiology of the urge-to-cough. Respir. Physiol. Neurobiol. 2016;226:115-120.

27. Brann D.H. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 2020;6:eabc5801. DOI: 10.1126/sciadv.abc5801

28. Meinhardt J., Radke J., Dittmayer C. et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 2021;24(2):168-175. DOI: 10.1038/s41593-020-00758-5

29. Berth S.H., Leopold P.L., Morfini G.N. Virus-induced neuronal dysfunction and degeneration. Front Biosci. 2009;14:5239-5259.

30. Davies J., Randeva H.S., Chatha K. et al. Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Mol. Med. Rep. 2020;22(5):4221-6.

31. Brann D.H. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 2020;6(31). DOI: 10.1126/sciadv.abc5801

32. Marshall M. View author publications COVID and the brain: researchers zero in on how damage occurs. Nature. 202 1 ;595:484-485.

33. Eliezer M., Hautefort C. MRI evaluation of the olfactory clefts in patients with SARS-CoV-2 infection revealed an unexpected mechanism for olfactory function loss. Acad. Radiol. 2020;27:1191.

34. Vaira L.A., Salzano G., Fois A.G., Piombino P., De Riu G. Potential pathogenesis of ageusia and anosmia in COVID-19 patients. Int. Forum Allergy Rhinol. 2020;10:1103-1104.

35. Kasmi Y., Khataby K., Souiri A. Coronaviridae: 100,000 Years of Emergence and Reemergence. Emerging and Reemerging Viral Pathogens. Ennaji M. M. Elsevier. 2019;1:135.

36. Abiodun O.A., Ola M.S. Role of brain renin angiotensin system in neurodegeneration: an update. Saudi J. Biol. Sci. 2020;27:905-912.

37. Lupala C.S., Ye Y., Chen H., Su X.D., Liu H. Mutations on RBD of SARS-CoV-2 Omicron variant result in stronger binding to human ACE2 receptor. Biochem. Biophys. Res. Commun. 2022;590:34-41. DOI: 10.1016/j.bbrc.2021.12.079

38. Конради А.О., Недошивин А.О. Ангиотензин II и COVID-19. Тайны взаимодействий. Российский кардиологический журнал. 2020;25(4):72-74.

39. Li Z., He W., Lan Y. et al. The evidence of porcine hemagglutinating encephalomyelitis virus induced nonsuppurative encephalitis as the cause of death in piglets. Peer J. 2016;4:e2443.

40. Kabbani N., Olds J.L. Does COVID19 infect the brain? If so, smokers might be at a higher risk. Molecular Pharmacology: journal. 2020;1(97):351-353.

41. Michaud V., Deodhar M., Arwood M., Al Rihani S.B, Dow P., Turgeon J. ACE2 as a therapeutic target for COVID-19; its role in infectious processes and regulation by modulators of the RAAS system. J. Clin. Med. 2020;9(7):2096.

42. Ashton R.S., Conway A., Pangarkar C. et al. Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling. Nat. Neurosci. 2012;15(10):1399-406.

43. Chen Y., Fu A.K., Ip N.Y. Eph receptors at synapses: implications in neurodegenerative diseases. Cell Signal. 2012;24(3):606-11.

44. Майи Б.С., Лейбовиц Я.А., Вудс А.Т., Аммон К.А., Лю А.Е., Раджа А. Роль нейропилина-1 в COVID-19. PLoS Pathog. 2021;17(1):e1009153.

45. Qiao J., Li W., Bao J., Peng Q., Wen D., Wang J. et al. The ex-pression of SARS-CoV-2 receptor ACE2 and CD147, and protease TMPRSS2 in human and mouse brain cells and mouse brain tis-sues. Biochem. Biophys. Res. Commun. 2020;533(4):867-71.

46. Li Z., Xu X., Yang M., Feng J., Liu C., Yang C. Role of angiotensin-converting enzyme 2 in neurodegenerative diseases during the COVID-19 pandemic. Aging (Albany NY). 2020;12(23):24453.

47. Donoghue M. et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 2000;87:E1-E9. DOI: 10.1161/01.RES.87.5.e1

48. Crackower M.A. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417:822-828. DOI: 10.1038/nature00786

49. Ribeiro D.E., Oliveira-Giacomelli Á., Glaser T., Arnaud-Sampaio V.F., Andrejew R., Dieckmann L. et al. Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol. Psychiatry. 2021;26(4):1044-59.

50. Lee M., Perl D., Steiner J. et al. Neurovascular injury with complement activation and inflammation in COVID-19. Brain. 2022;145:2555-2568. DOI: 10.1093/brain/awac151/

51. Nakajima K., Tohyama Y., Kohsaka S., Kurihara T. Ability of rat microglia to uptake extracellular glutamate. Neurosci. Lett. 2001;307:171-174.

52. Гомазков О.А. Ковид-19. Клеточные и молекулярные механизмы поражения мозга. Успехи современной биологии. 2021;141(5):457-466.

53. Lledó G., Sellares J., Brotons C. and the Multidisciplinary Collaborative Group for the Scientific Monitoring of COVID-19 (GCMSC), on behalf of. Post-acute COVID-19 syndrome: a new tsunami requiring a universal case definition. Clin. Microbiol. Infect. 2022;28(3):315-318. Published online 2021 Nov 24. DOI: 10.1016/j.cmi.2021.11.015

54. Rogers J.P., Chesney E., Oliver D., Pollak T.A., McGuire P., Fusar-Poli P., Zandi M.S., Lewis G., David A.S. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020;7:611-627. DOI: 10.1016/S2215-0366(20)30203-0

55. Kępińska A.P., Iyegbe C.O., Vernon A.C., Yolken R., Murray R.M., Pollak T.A. Schizophrenia and influenza at the centenary of the 1918-1919 Spanish influenza pandemic: Mechanisms of psychosis risk. Front. Psychiatry. 2020;11:72. DOI: 10.3389/fpsyt.2020.00072

56. Gabriel A., Snyder H., Carrillo M. et al. The chronic neuropsychiatric sequelae of COVID-19: The need for a prospective study of viral impact on brain functioning CNS SARS-CoV-2 Consortium. Alzheimers Dement. 2021;17(6):1056-1065. DOI: 10.1002/alz.12255

57. Goertz Y.M.J., Van Herck M., Delbressine J.M. et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: The post-COVID-19 syndrome? ERJ Open Res. 2020;6:542. DOI: 10.1183/23120541.00542-2020

58. Ahmed H., Patel K., Greenwood D.C., Halpin S. et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis. J. Rehabil. Med. 2020;52:333-335. DOI: 10.2340/16501977-2694

59. Hajure M., Tariku M., Mohammedhussein M., Dule A. Depression, anxiety and associated factors among chronic medical patients amid COVID-19 pandemic in Mettu Karl Referral Hospital, Mettu, Ethiopia, 2020. Neuropsychiatr. Dis. Treat. 2020;16:2511-2518. DOI: 10.2147/NDT.S281995.

60. Amsalem D., Dixon L.B., Neria Y. The coronavirus disease 2019 (COVID-19) outbreak and mental health: Current risks and recommended actions. JAMA Psychiatry. 2021;78:9-10. DOI: 10.1001/jamapsychiatry.2020.1730

61. Xiang Y.-T., Yang Y., Li W., Zhang L., Zhang Q., Cheung T., Ng C.H. Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. Lancet Psychiatry. 2020;7:228-229. DOI: 10.1016/S2215-0366(20)30046-8

62. Taquet M., Luciano S. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. The Lancet. 2021;8:130-140.

63. Centonze D., Muzio L., Rossi S. Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J. Neurosci. 2009;29:3442-3452.

64. Terry R., Masliah E., Salmon D.P. et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 1991;30:572-580.

65. Kehoe P.G., Wong S., Mulhim N., Palmer L.E., Miners J.S. Angiotensin-converting enzyme 2 is reduced in Alzheimer's disease in association with increasing amyloid-beta and tau pathology. Alzheimers Res. Ther. 2016;8:50. DOI: 10.1186/s13195-016-0217-7

66. Jiang T., Zhang Y.-D., Zhou J.-S. et al. Angiotensin-(1-7) is reduced and inversely correlates with tau hyperphosphorylation in animal models of Alzheimer's disease. Mol. Neurobiol. 2016;53: 2489-2497.

67. Bao R., Hernandez K., Huang L., Luke J.J. ACE2 and TMPRSS2 expression by clinical, HLA, immune, and microbial correlates across 34 human cancers and matched normal tissues: implications for SARS-CoV-2 COVID-19. J. Immunother. Cancer. 2020;e001020 DOI: 10.1136/jitc-2020-001020

68. Рудой А.С., Москалев А.В., Сбойчаков В.Б. Роль трансформирующего ростового фактора β в иммунопатогенезе заболеваний соединительной ткани. Клиническая лабораторная диагностика. 2016;61(2):103-106.

69. Reiken S. et al. Alzheimer's-like signaling in brains of COVID-19 patients. Alzheimer's & Dementia. 2021;18:955-965.

70. Frontera J., Allal Boutajangout A., Masurkar A. Comparison of serum neurodegenerative biomarkers among hospitalized COVID-19 patients versus non-COVID subjects with normal cognition, mild cognitive impairment, or Alzheimer's dementia. Journal Alzheimer's Dement. 2021;1-12.

71. Zalpoor H. The roles of Eph receptors, neuropilin-1, P2X7, and CD147 in COVID-19-associated neurodegenerative diseases: inflammasome and JaK inhibitors as potential promising therapies. Cellular & Molecular Biology Letters. 2022;27:10.

72. Giorgio C., Hassan Mohamed I., Flammini L. et al. Lithocholic acid is an Eph-ephrin ligand interfering with Eph-kinase activation. PLoS ONE. 2011;6(3):e18128.

73. Noberini R., Koolpe M., Peddibhotla S. et al. small molecules can selectively inhibit Ephrin binding to the EphA4 and EphA2 receptors. J. Biol. Chem. 2008;283(43):29461-72.

74. Tognolini M., Hassan-Mohamed I., Giorgio C., Zanotti I., Lodola A. Therapeutic perspectives of Eph-ephrin system modulation. Drug. Discovery Today. 2014;19(5):661-9. DOI: 10.1016/j.drudis.2013.11.017

75. Petty A., Myshkin E., Qin H. et al. A small molecule agonist of EphA2 receptor tyrosine kinase inhibits tumor cell migration in vitro and prostate cancer metastasis in vivo. PLoS ONE. 2012;7: e42120.


Рецензия

Для цитирования:


Сапроненкова О.А., Широков Е.А. Постковидные нейрокогнитивные расстройства. Клиническая медицина. 2023;101(6):265-274. https://doi.org/10.30629/0023-2149-2023-101-6-265-274

For citation:


Sapronenkova O.A., Shirokov E.A. Post-COVID neurocognitive disorders. Clinical Medicine (Russian Journal). 2023;101(6):265-274. (In Russ.) https://doi.org/10.30629/0023-2149-2023-101-6-265-274

Просмотров: 505


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)