Preview

Clinical Medicine (Russian Journal)

Advanced search

Features of hematological and immune reactions in patients with autoimmune thyroiditis living in the Аrctic region of the Russian Federation

https://doi.org/10.30629/0023-2149-2023-101-4-5-216-222

Abstract

Objective. To identify the features of hematological and immune reactions in patients with autoimmune thyroiditis, living in the Arctic region of the Russian Federation.

Material and methods. The study involved 84 people aged 21–55, including 35 patients with AIT and 49 practically healthy ones at the time of examination. The study included estimating of erythrocyte aggregation, platelets, neutrophil granulocytes, lymphocytes, hemogram, neutrophil phagocytic activity, immunoperoxidase reaction, fl ow cytometry, enzyme immunoassay (EIA).

Results. In patients with AIT living in the Arctic, an increase in the aggregation of erythrocytes (82.86% vs. 65.31%) and platelets (11.43% vs. 2.04%), an increase in the number of monocytes with vacuolization of cytoplasm and nucleus (5.71% vs. 2.04%) and neutrophils with azurophilic granularity (14.28 vs. 10.20%) was found. Pathological processes in AIT are combined with a high frequency of neutropenia incidence (34.28% vs. 18.37%) and a defi ciency of phagocytic protection (34.28% vs. 4.08%). The compensatory reaction in neutropenia is manifested in a high level of monocytosis registration (48.57%) and eosinophilia (17.14%). In patients with AIT, a decrease in the total content of lymphocytes was revealed mainly with CD3+, CD3–CD16+CD56+, CD71+, CD25+, CD54+ receptors, as well as the level of sCD25, sCD54 against the background of an increase in the concentration of IFN-γ, IL-6, IgA, M, G.

Conclusion. The pathogenetic mechanism of tissue damage and infl ammation exacerbation in patients with autoimmune thyroiditis (AIT) living in the Arctic is a combination of increased levels of erythrocyte and platelet aggregation, degranulation of neutrophil granulocytes with the release of azurophilic granules, and vacuolization of monocyte cytoplasm and nucleus. Reduction in cell-mediated cytotoxicity alongside an increase in humoral reactions refl ects the risk of autoimmune processes formation. 

About the Authors

K. V. Vereshchagina
N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Vereshchagina Kseniya V.

163000, Arkhangelsk



A. V. Samodova
N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Samodova Anna V.

163000, Arkhangelsk



L. K. Dobrodeeva
N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Dobrodeeva Liliya K.

163000, Arkhangelsk



References

1. Shidlovskyy O.V., Shidlovskyy V.O., Sheremet M.I. et al. Patho-genetic mechanisms, clinical signs and consequences of the autoimmune thyroiditis impact on body systems. Inter. J. Endocrinol. 2022;18(1):70–77. DOI: 10.22141/2224-0721.18.1.2022.1147

2. Ragusa F., Fallahi P., Elia G. et al. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract. Res. Clin. Endocrinol. Metab. 2019;33(6):1–13. DOI: 10.1016/j.beem.2019.101367

3. Stavinskaia O.A., Dobrodeeva L.K. Mitochondrial pathway of initiation of lymphocyte apoptosis against the background of suppression of T-cell proliferation in lymphopenia in practically healthy Arctic residents. Ekologiia cheloveka. 2018;5:22–27. (In Russian)].

4. Dobrodeeva L.K., Samodova A.V., Karjakina O.E. Interrelations in the immune system. Ekaterinburg: RIO UrO RAN: 2014. (In Russian)].

5. Gematologiya. Ed by O.N. Polozyuk. Donskoy GAU, 2019. (In Russian)].

6. Vasil’ev V.V., Selin V.S. The method of integrated environmental management zoning and allocation of the southern border of the Russian Arctic. Vestnik Kol’skogo nauchnogo tsentra RAN. 2014;16(1):64–71. (In Russian)].

7. Carneiro J., Lima R., Campos J.B.L.M. et al. A microparticle blood analogue suspension matching blood rheology. Soft. Matter. 2021;17(14):3963–3974. DOI: 10.1039/d1sm00106j

8. Ashkinazi I.Ya. Method of quantitative visual assessment of erythrocyte aggregation. Leningrad., 1986. (In Russian)].

9. Clinical laboratory diagnostics: research methods. Ed. by I.A. Zupanets. Khar’kov, «Zolotye stranitsy», 2005. (In Russian)].

10. Ates I., Arikan M.F., Altay M. et al. The eff ect of oxidative stress on the progression of Hashimoto’s thyroiditis. Arch. Physiol. Biochem. 2018;124(4):351−356. DOI: 10.1080/13813455.2017.1408660

11. Litvickij P.F. Disorders of regional blood fl ow and microcirculation. Regionarnoe krovoobrashhenie i mikrocirkuljacija. 2020;19(1):82–92. (In Russian)] .

12. Caimi G., Lo Presti R., Carlisi M. Refl ections on the unexpected laboratory fi nding of hemorheological alterations observed in some haematological disorders. Microvasc. Res. 2021;136:104–171. DOI: 10.1016/j.mvr.2021.104171

13. Schmid-Schonbein H., Rieger H., Gallasch G. et al. Pathological red cell aggregation (clump aggregation). Molecular and electrochemical factors. Bibliotheca Anatomica. 1977;16(2):484–489.

14. Кравец Е.Б., Новицкий В.В., Грацианова Н.Д. Обратимая агрегация эритроцитов у детей с патологией щитовидной железы. Проблемы эндокринологии. 1998;45(2):17–19. [Kravets E.B., Novitskii V.V., Gratsianova N.D. Reversible aggregation of erythrocytes in children with thyroid pathology. Problemy endokrinologii.1998; 45(2):17–19. (In Russian)].

15. Salerno M., Improda N., Capalbo D. Management of endocrine disease. Subclinical hypothyroidism in children. Eur. J. Endocrinol. 2020;183(2):13-28. DOI: 10.1530/EJE-20-0051

16. Duan R., Goldmann L., Li Y. et al. Spontaneous Platelet Aggregation in Blood Is Mediated by FcγRIIA Stimulation of Bruton’s Tyrosine Kinase. Int. J. Mol. Sci. 2021;23(1):76. DOI: 10.3390/ijms23010076

17. Baranov D.Z., Stroev Yu., Churilov L.P. The state of the platelet link of homeostasis in patients with autoimmune thyroiditis with hypothyroidism. Zdorov’e — osnova chelovecheskogo potentsiala: problemy i puti ikh resheniya. 2015;10(2):542–551. (In Russian)].

18. Dobrodeeva L.K., Samodova A.V., Balashova S.N., et al. Intercellular interactions in peripheral venous blood in practically healthy residents of high latitudes. Bio.Med. Res. International. 2021;2021:7086108. DOI: 10.1155/2021/7086108

19. Perera R.M. Zooming in on the cell biology of disease. Mol. Biol. Cell. 2021;32(22):4–8. DOI: 10.1091/mbc.E21-09-0459

20. Ottonello L., Epstein A.L., Mancini M. et al. Monoclonal LYM-1 antibody-dependent cytotocsis by human neutrophils exposed to GMCSF: auto-regulation of target cell attack by catapsin G. J. Leukocyte Biol. 2004;75(1):99–105. DOI: 10.1189/jlb.0403133

21. Clinical Endocrinology: a guide for doctors. Ed by E.A. Xolodovoj. Moscow, Medical Informational Agency, 2011. (In Russian)].

22. Liu C., Yang H., Shi W. et al. MicroRNA-mediated regulation of T helper type 17/regulatory T-cell balance in autoimmune disease. Immunology. 2018;155(4):427–434. DOI: 10.1111/imm.12994

23. Bolotskaja L.A., Tarljun A.A. Assessment and contribution to the pathogenesis of autoimmune thyroiditis of individual parameters of hormonal and immune status. Dnevnik kazanskoj medicinskoj shkoly. 2017;4(18):30–32. (In Russian)].

24. Izumida Y., Seiyama A., Maeda N. Erythrocyte aggregation: bridging by macromolecules and electrostatic repulsion by sialic acid. Biochimica et Biophysica Acta. 1991;1067(2):221–226. DOI: 10.1016/0005-2736(91)90047-c

25. Kaufmann S.H.E. Corrigendum: immunology’s coming of age. Frontiers in Immunology. 2019;10:12–14. DOI: 10.3389/fimmu.2019.01214

26. Brittain N.J., Erexson C., Faucette L. et al. Non-opsonising aggregates of IgG and complement in haemoglobin C erythrocytes. British Journal of Haematology. 2007;136(3):491–500. DOI: 10.1111/j.1365-2141.2006.06446.x

27. Aghayev R.M., Sadikhov F.G., Aliyev F.C. Evaluation of immunological changes in patients with diff use form of autoimmune thyroiditis during laser photodynamic therapy. Bulletin of Surgery of Kazakhstan. 2021;4(69):32–37. DOI: 10.35805/bsk2021iv032

28. Sviridenko N.Yu., Bessmertnaya E.G., Belovalova I.M. et al. Autoantibodies, immunoglobulins and cytokine profi le in patients with Graves’ dis- ease and endocrine ophthalmopathy. Problemy endokrinologii. 2020;66(5):15–23. (In Russian)]. DOI: 10.14341/probl12544

29. Luty J., Ruckemann-Dziurdzińska K., Witkowski J.M. et al. Immunological aspects of autoimmune thyroid disease — Complex interplay between cells and cytokines. Cytokine. 2019;116:128–133. DOI: 10.1016/j.cyto.2019.01.003

30. Hebeda C.B., Teixeira S.A., Tamura E.K. et al. Nitric oxide modulates lipopolysaccharide-induced endothelial platelet endothelial cell adhesion molecule expression via interleukin-10. Clin. Exp. Immunol. 2011;165(2):172–179. DOI: 10.1111/j.1365-2249.2011.04396.x

31. Novikov V.V. Soluble diff erentiation molecules in infl ammatory processes (The second life of proteins): monograph. Nizhnij Novgorod, Izdatelskij salon, 2022 (In Russian)].

32. Simbirtsev A.S. Cytokines: classifi cation and biological functions. Tsitokiny i vospalenie. 2004;3(2):16–21. (In Russian)].

33. Gusev D.E., Palitseva E.M., Potievskiy B.G. Adhesion molecules sVCAM-1 and sICAM-1 in various forms of coronary heart disease. Kardiologiya. 2009;2:11–14. (In Russian)].


Review

For citations:


Vereshchagina K.V., Samodova A.V., Dobrodeeva L.K. Features of hematological and immune reactions in patients with autoimmune thyroiditis living in the Аrctic region of the Russian Federation. Clinical Medicine (Russian Journal). 2023;101(4-5):216-222. (In Russ.) https://doi.org/10.30629/0023-2149-2023-101-4-5-216-222

Views: 644


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)