Preview

Clinical Medicine (Russian Journal)

Advanced search

Relief of chest pain after SARS-CоV-2 vaccination

https://doi.org/10.30629/0023-2149-2022-100-9-10-474-478

Abstract

A 46-year-old patient consulted a cardiologist complaining of discomfort behind the sternum, which manifested itself in 3 weeks after a mild COVID-19 recovery and had been persisting for about 4 months by the time she consulted the doctor. Echocardiography did not reveal any disturbances in regional and global contractility. It was thickening and hyperechogenicity of the pericardium of the lower-lateral, and lateral areas of the left ventricle without any signs of pathological exudation that attracted attention. A chest X-ray and a test with physical activity were performed. Blood tests did not reveal any abnormality, an increase in C-reactive protein was observed. The patient was diagnosed with chronic non-exudative form of pericarditis associated with COVID-19. A successful treatment was carried out: colchicine 0.5 mg/day, ibuprofen 600 mg 3 times a day. Next time the patient consulted a doctor 3 months later. Against the background of ARVI, typical episodes of low-intensity chest pain repullulated. Echocardiography showed regional exudation and initial signs of impaired diastolic function. A compulsory vaccination with Gam-COVID-Vac was carried out in 4 weeks. The post-vaccination period was accompanied by low-grade pyrexia for 2 days, after which the patient noted the complete disappearance of the heart pain. Echocardiography recorded pericardial layers separation and some improvement in diastolic function. The treatment was not carried out for various reasons. Over the next months, cardialgia did not recur. Check study 3 months after showed no visible exudation into the pericardial cavity, a decrease in hyperechogenicity compared to the records of previous studies was noted. In 8 months after vaccination, the patient suffered another mild COVID-19 with exudative pericarditis recurrence and the involvement of the pleura. Blood tests taken during the 1st week of the disease revealed a characteristic cellular shift (lymphocytosis 38%), as well as an increase in ERS up to 26 mm/h, D-dimer up to 1166 μg/l. CRP was normal. Additional analysis for cardiolipin antibodies, antinuclear factor, rheumatoid factor, cyclic citrullinated peptide antibodies, b2 glycoprotein I antibodies did not reveal any pathology. Transient low-grade pyrexia had been persisting for 3 weeks in evening hours, in spite of the fact that she kept taking 800 mg of ibuprofen per day. By now, the patient continues receiving colchicine according to the planned 6-months course of administration.

About the Authors

Z. N. Sukmarova
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Sukmarova Zulfiya N.

115522, Moscow



E. A. Kim
Central Military Clinical Hospital named after P.V. Mandryka of the Ministry of Defense of Russia
Russian Federation

Kim Evgeny A.

107014, Moscow



T. V. Popkova
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Popkova Tatiana V.

115522, Moscow



References

1. Adler Y., Charron P., Imazio M., Badano L., Barón-Esquivias G., Bogaert J., Brucato A., Gueret P., Klingel K., Lionis C., Maisch B., Mayosi B., Pavie A., Ristic A.D., Sabaté Tenas M., Seferovic P., Swedberg K., Tomkowski W. ESC Scientific Document Group. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: The Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC) Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2015;36(42):2921–2964. DOI: 10.1093/eurheartj/ehv318

2. Sudre C.H., Murray B., Varsavsky T., Graham M.S., Penfold R.S., Bowyer R.C., Pujol J.C., Klaser K., Antonelli M., Canas L.S. et al. Attributes and predictors of long COVID. Nat. Med. 2021;27:626– 631. DOI: 10.1038/s41591-021-01292-y

3. Chopra V., Flanders S.A., O’Malley M., Malani A.N., Prescott H.C. Sixty-day outcomes among patients hospitalized with COVID-19. Ann. Intern. Med. 2021;174:576–578. DOI: 10.7326/M20-5661

4. Nalbandian A., Sehgal K., Gupta A., Madhavan M.V., McGroder C., Stevens J.S., Cook J.R., Nordvig A.S., Shalev D., Sehrawat T.S. et al. Post-acute COVID-19 syndrome. Nat. Med. 2021;27:601–615. DOI: 10.1038/s41591-021-01283-z

5. Gammazza A.M., Légaré S., Bosco G.L., Fucarino A., Angileri F., Oliveri M., Cappello F. Molecular mimicry in the post-COVID-19 signs and symptoms of neurovegetative disorders? Lancet Microbe. 2021;2:e94. DOI: 10.1016/S2666-5247(21)00033-1

6. Mumtaz A., Sheikh A.A.E., Khan A.M., Khalid S.N., Khan J., Nasrullah A., Sagheer S., Sheikh A.B. COVID-19 Vaccine and Long COVID: A Scoping Review. Life (Basel). 2022;12(7):1066. DOI: 10.3390/life12071066

7. Diaz-Arocutipa C., Saucedo-Chinchay J., Imazio M. Pericarditis in patients with COVID-19: a systematic review. J. Cardiovasc. Med. (Hagerstown). 20211;22(9):693-700. DOI: 10.2459/JCM.0000000000001202. PMID: 33927144

8. Sukmarova Z.N., Simonenko V.B., Ibragimova F.M., Demyanenko A.V. Pericardial eff usion as a new specifi c symptom of SARS-CoV-2. Clinical Medicine (Russian Journal). 2021;99(3):192–197. (In Russian). DOI: https://doi.org/10.30629/0023-2149-2021-99-3-192-197

9. Imazio M., Brucato A., Belli R. et al. Colchicine for the prevention of pericarditis: what we know and what we do not know in 2014 — systematic review and meta-analysis. J. Cardiovasc. Med. (Hagerstown). 2014;15:840.

10. Sukmarova Z.N., Ovchinnikov Yu.V., Gudima G.O., Ibragimova F.M., Afonina O.V., Machkalyan K.E. Pericardial hyperechogenicity in SARS-CoV-2 vaccine recipients. Infectious Diseases 2021;19(4):43–50. (In Russian).

11. Fatima M., Ahmad Cheema H., Ahmed Khan M.H., Shahid H., Saad Ali M., Hassan U., Wahaj Murad M., Aemaz Ur Rehman M., Farooq H. Development of myocarditis and pericarditis after COVID-19 vaccination in adult population: A systematic review. Ann. Med. Surg. (Lond). 2022;76:103486. DOI: 10.1016/j.amsu.2022.103486

12. Shoenfeld Y., Agmon-Levin N. “ASIA” autoimmune/inflammatory syndrome induced by adjuvants. J. Autoimmun. 2011;36:4–8. DOI: 10.1016/j.jaut.2010.07.003

13. Watad A., De Marco G., Mahajna H., Druyan A., Eltity M., Hijazi N., Haddad A., Elias M., Zisman D., Naffaa M.E., Brodavka M., Cohen Y., Abu-Much A., Abu Elhija M., Bridgewood C., Langevitz P., McLorinan J., Bragazzi N.L., Marzo-Ortega H., Lidar M., Calabrese C., Calabrese L., Vital E., Shoenfeld Y., Amital H., McGonagle D. Immune-mediated disease flares or new-onset disease in 27 subjects following mRNA/DNA SARS-CoV-2 vaccination. Vaccines (Basel). 2021;9:435. DOI: 10.3390/vaccines9050435

14. Jara L.J., Vera-Lastra O., Mahroum N., Pineda C., Shoenfeld Y. Autoimmune post-COVID vaccine syndromes: does the spectrum of autoimmune/inflammatory syndrome expand? Clin. Rheumatol. 2022;41(5):1603–1609. DOI: 10.1007/s10067-022-06149-4

15. Kaulen L.D., Doubrovinskaia S., Mooshage C., Jordan B., Purrucker J., Haubner C., Seliger C., Lorenz H.M., Nagel S., Wildemann B., Bendszus M., Wick W., Schönenberger S. Neurological autoimmune diseases following vaccinations against SARS-CoV-2: a case series. Eur. J. Neurol. 2022;29:555–563. DOI: 10.1111/ene.15147

16. Chen Y., Xu Z., Wang P., Li X.M., Shuai Z.W., Ye D.Q., Pan H.F. New-onset autoimmune phenomena post-COVID-19 vaccination. IMMUNOLOGY. 2021;00:1–16. DOI: 10.1111/imm.13443

17. Schultz N.H., Sørvoll I.H., Michelsen A.E. et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N. Engl. J. Med. 2021;384:2124–2130. DOI: 10.1056/NEJMoa2104882

18. Parums D.V. Editorial: SARS-CoV-2 mRNA vaccines and the possible mechanism of vaccine-induced immune thrombotic thrombocytopenia (VITT) Med. Sci. Monit. 2021;27:e932899. DOI: 10.12659/MSM.932899

19. Tarawneh O, Tarawneh H. Immune thrombocytopenia in a 22-yearold post COVID-19 vaccine. Am. J. Hematol. 2021;96:E133–E134. DOI: 10.1002/ajh.26106

20. Oskay T. Isık M. Leukocytoclastic vasculitis after the third dose of CoronaVac vaccination. Clin. Rheumatol. 2021;1:1–3. DOI: 10.1007/s10067-021-05993-0

21. Ursini F., Ruscitti P., Raimondo V., De Angelis R., Cacciapaglia F., Pigatto E., Olivo D., Di Cola I., Galluccio F., Francioso F., Foti R., Tavoni A., D’Angelo S., Campochiaro C., Motta F., De Santis M., Bilia S., Bruno C., De Luca G., Visentini M., Ciaffi J., Mancarella L., Brusi V., D’Onghia M., Cuomo G., Fusaro E., Dagna L., Guiducci S., Meliconi R., Iannone F., Iagnocco A., Giacomelli R., Ferri C. Spectrum of short-term inflammatory musculoskeletal manifestations after COVID-19 vaccine administration: a report of 66 cases. Ann. Rheum. Dis. 2021;81:440–441. DOI: 10.1136/annrheumdis-2021-221587

22. Machado P.M., Lawson-Tovey S., Strangfeld A., Mateus E.F., Hyrich K.L., Gossec L., Carmona L., Rodrigues A., Raffeiner B., Duarte C., Hachulla E., Veillard E., Strakova E., Burmester G.R., Yardımcı G.K., Gomez-Puerta J.A., Zepa J., Kearsley-Fleet L., Trefond L., Cunha M., Mosca M., Cornalba M., Soubrier M., Roux N., Brocq O., Durez P., Conway R., Goulenok T., Bijlsma J.W., McInnes I.B., Mariette X. Safety of vaccination against SARS-CoV-2 in people with rheumatic and musculoskeletal diseases: results from the EULAR Coronavirus Vaccine (COVAX) physician-reported registry. Ann. Rheum. Dis. 2021;0:1–15. DOI: 10.1136/annrheumdis-2021-221490

23. Fan Y., Geng Y., Wang Y., Deng X., Li G., Zhao J., Ji L., Zhang X., Song Z., Zhang H., Sun X., Gao D., Xie W., Huang H., Hao Y., Zhang Z. Safety and disease flare of autoimmune inflammatory rheumatic diseases: a large real-world survey on inactivated COVID-19 vaccines. Ann. Rheum. 2021;81:443–445. DOI: 10.1136/annrheumdis-2021-221736

24. Kontzias A., Barkhodari A., Yao Q. Pericarditis in systemic rheumatologic diseases. Curr. Cardiol. Rep. 2020;22(11):142. DOI: 10.1007/s11886-020-01415-w

25. Writing Committee, Gluckman T.J., Bhave N.M., Allen L.A., Chung E.H., Spatz E.S., Ammirati E., Baggish A.L., Bozkurt B., Cornwell W.K. 3rd, Harmon K.G., Kim J.H., Lala A., Levine B.D., Martinez M.W., Onuma O., Phelan D., Puntmann V.O., Rajpal S., Taub P.R., Verma A.K. 2022 ACC Expert Consensus Decision Pathway on Cardiovascular Sequelae of COVID-19 in Adults: Myocarditis and Other Myocardial Involvement, Post-Acute Sequelae of SARS-CoV-2 Infection, and Return to Play: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2022;79(17):1717–1756. DOI: 10.1016/j.jacc.2022.02.003

26. Jany B., Welte T. Pleural Effusion in Adults-Etiology, Diagnosis, and Treatment. Dtsch. Arztebl. Int. 2019;116(21):377–386. DOI: 10.3238/arztebl.2019.0377

27. Zheng C., Shao W., Chen X., Zhang B., Wang G., Zhang W. Realworld effectiveness of COVID-19 vaccines: a literature review and meta-analysis. Int. J. Infect. Dis. 2022;114:252–260. DOI: 10.1016/j.ijid.2021.11.009

28. Marra A.R., Kobayashi T., Suzuki H., Alsuhaibani M., Tofaneto B.M., Bariani L.M., Auler M.A., Salinas J.L., Edmond M.B., Doll M., Kutner J.M., Pinho J.R.R., Rizzo L.V., Miraglia J.L., Schweizer M.L. Short-term effectiveness of COVID-19 vaccines in immunocompromised patients: a systematic literature review and meta-analysis. J. Infect .1. 2022;S0163-4453(21):00658–7. DOI: 10.1016/j.jinf.2021.12.035

29. Sukmarova Z., Ovchinnikov Y., Saidova M., Gromov A., Ibragimova F. The attempt to give an unbiased view of the advantage that the vaccination has against COVID-19 in terms of damage caused to cardiac structures, as seen on TTE. The case-control study. ESR congress-2022. #19532/ https://elemental.medium.com/how-vaccines-might-improve-longcovid-c1f41c4d7378

30. Dotan A., Shoenfeld Y. Post-COVID syndrome: the aftershock of SARS-CoV-2. Int. J. Infect. Dis. 2022;114:233–235. DOI: 10.1016/j.ijid.2021.11.020


Review

For citations:


Sukmarova Z.N., Kim E.A., Popkova T.V. Relief of chest pain after SARS-CоV-2 vaccination. Clinical Medicine (Russian Journal). 2022;100(9-10):474-478. (In Russ.) https://doi.org/10.30629/0023-2149-2022-100-9-10-474-478

Views: 639


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)