Preview

Clinical Medicine (Russian Journal)

Advanced search

Clinical realization of anatomical and physiological properties of the sinoatrial node

https://doi.org/10.30629/0023-2149-2022-100-9-10-425-431

Abstract

Diseases of the sinoatrial node (SАN) are characterized by its inability to perform the function of the dominant pacemaker. This review presents data from recent studies of the anatomy and physiology of the SАN, which demonstrate the presence of structural and functional heterogeneity of the SAN and its components, describes the structure and function of the conducting intra-nodal pathways, the “novel paranodal area”, and also discusses the phenomenon of a shift in the site of excitation generation and the presence of a “non-firing mode” of cardiomyocytes. The authors critically discussed the genetic mechanisms of the development of sick sinus node syndrome (SSS), justified a multidisciplinary approach and further anatomical, morphological and physiological studies that play a fundamental role in the development of therapy and diagnosis of related diseases.

About the Authors

V. E. Milyukov
Pirogov Russian National Research Medical University (Pirogov Medical University)
Russian Federation

Milyukov Vladimir Е.

117997, Moscow



V. A. Bryukhanov
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

Valery A. Bryukhanov

119991 Moscow



С. С. Nguyen
Yersin University
Viet Nam

Nguyen Cao Cuong

Dalat



References

1. Keith A., Flack M. The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J. Anat. Physiol. 1907;41(Pt3):172–189.

2. De Ponti R., Marazzato J., Bagliani G., Leonelli F.M., Padeletti L. Sick sinus syndrome. Card. Electrophysiol. Clin. 2018;10(2):183–195. DOI: 10.1016/j.ccep.2018.02.002

3. Vatutin N.T., Taradin G.G. Sick sinus node syndrome. Universitetskaya klinika. 2020;4(37):122–130. (In Russian). DOI: 10.26435/uc.v0i4(37).498

4. Jensen P.N., Gronroos N.N., Chen L.Y., Folsom A.R., deFilippi C., Heckbert S.R., Alonso A. Incidence of and risk factors for sick sinus syndrome in the general population. J. Am. Coll. Cardiol. 2014;64(6):531–538. DOI: 10.1016/j.jacc.2014.03.056

5. Chang W., Li G. Clinical review of sick sinus syndrome and atrial fi brillation. Klinischer Überblick über das Syndrom des kranken Sinusknotens und Vorhoffl immern. Herz. 2022;47(3):244–250. DOI: 10.1007/s00059-021-05046-x

6. Yang P.S., Kim D., Jang E., Yu H.T., Kim T.H., Sung J.H., Pak H.N., Lee M.H., Joung B. Risk of sick sinus syndrome in patients diagnosed with atrial fi brillation: A population-based cohort. J. Cardiovasc. Electrophysiol. 2021;32(10):2704–2714. DOI: 10.1111/jce.15202

7. Jackson L.R. 2nd., Rathakrishnan B., Campbell K., Thomas K.L., Piccini J.P., Bahnson T., Stiber J.A., Daubert J.P. Sinus node dysfunction and atrial fi brillation: a reversible phenomenon? Pacing Clin. Electrophysiol. 2017;40(4):442–450. DOI: 10.1111/pace.13030

8. Ho S.Y., Sánchez-Quintana D. Anatomy and pathology of the sinus node. J. Interv. Card. Electrophysiol. 2016;46(1):3–8. DOI: 10.1007/s10840-015-0049-6

9. Sánchez-Quintana D., Cabrera J.A., Farré J., Climent V., Climent V., Anderson RH., Ho S.Y. Sinus node revisited in the era of electroanatomical mapping and catheter ablation. Heart. 2005;91(2):189–194. DOI: 10.1136/hrt.2003.031542

10. Pérez-Riera A.R., Barbosa-Barros R., Daminello-Raimundo R., de Abreu L.C., Nikus K. Current aspects of the basic concepts of the electrophysiology of the sinoatrial node. J. Electrocardiol. 2019;57:112–118. DOI: 10.1016/j.jelectrocard.2019.08.013

11. Hennis K., Biel M., Wahl-Schott C., Fenske S. Beyond pacemaking: HCN channels in sinoatrial node function. Prog. Biophys. Mol. Biol. 2021;166:51–60. DOI: 10.1016/j.pbiomolbio.2021.03.004

12. Kloesel B., DiNardo J.A., Body S.C. Cardiac Embryology and Molecular Mechanisms of Congenital Heart Disease: A Primer for Anesthesiologists. Anesth. Analg. 2016;123(3):551–569. DOI: 10.1213/ANE.0000000000001451

13. van Weerd J.H., Christoffels V.M. The formation and function of the cardiac conduction system. Development. 2016;143(2):197–210. DOI: 10.1242/dev.124883

14. Mandla R., Jung C., Vedantham V. Transcriptional and Epigenetic Landscape of Cardiac Pacemaker Cells: Insights Into Cellular Specialization in the Sinoatrial Node. Front Physiol. 2021;12:712666. Published 2021 Jul 16. DOI: 10.3389/fphys.2021.712666

15. Hoekstra M., van Ginneken A.C.G., Wilders R., Verkerk A.O. HCN4 current during human sinoatrial node-like action potentials. Prog. Biophys. Mol. Biol. 2021;166:105–118. DOI: 10.1016/j.pbiomolbio.2021.05.006

16. Vedantham V. New Approaches to Biological Pacemakers: Links to Sinoatrial Node Development. Trends Mol. Med. 2015;21(12):749–761. DOI: 10.1016/j.molmed.2015.10.002

17. Zhao H., Wang F., Zhang W., Yang M., Tang Y., Wang X., Zhao Q., Huang C. Overexpression of TBX3 in human induced pluripotent stem cells (hiPSCs) increases their differentiation into cardiac pacemaker-like cells. Biomed. Pharmacother. 2020;130:110612. DOI: 10.1016/j.biopha.2020.110612

18. Petkova M., Atkinson A.J., Yanni J., Stuart L., Aminu A.J., Ivanova A.D., Pustovit K.B., Geragthy C., Feather A., Li N., Zhang Y., Oceandy D., Perde F., Molenaar P., D’Souza A., Fedorov V.V., Dobrzynski H. Identifi cation of key small non-coding microRNAs controlling pacemaker mechanisms in the human sinus node. J. Am. Heart Assoc. 2020;9(20):e016590. DOI: 10.1161/JAHA.120.016590

19. Ishikawa T., Ohno S., Murakami T., Yoshida K., Mishima H., Fukuoka T., Kimoto H., Sakamoto R., Ohkusa T., Aiba T., Nogami A., Sumitomo N., Shimizu W., Yoshiura K.I., Horigome H., Horie M., Makita N. Sick sinus syndrome with HCN4 mutations shows early onset and frequent association with atrial fi brillation and left ventricular noncompaction [published correction appears in Heart Rhythm. 2020 Sep;17(9):1631]. Heart Rhythm. 2017;14(5):717–724. DOI: 10.1016/j.hrthm.2017.01.020

20. Milano A., Vermeer A.M., Lodder E.M., Barc J., Verkerk A.O., Postma A.V., van der Bilt IA., Baars M.J., van Haelst P.L., Caliskan K., Hoedemaekers Y.M., Le Scouarnec S., Redon R., Pinto Y.M., Christiaans I, Wilde A.A, Bezzina C.R. HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J. Am. Coll. Cardiol. 2014;64(8):745–756. DOI: 10.1016/j.jacc.2014.05.045

21. Li W., Yin L., Shen C., Ge J., Sun A. SCN5A Variants: Association With Cardiac Disorders. Front Physiol. 2018;9:1372. Published 2018 Oct 9. DOI: 10.3389/fphys.2018.01372

22. Timasheva Y., Badykov M., Akhmadishina L., Nasibullin T., Badykova E., Pushkareva A., Plechev V., Sagitov I., Zagidullin N. Genetic predictors of sick sinus syndrome. Mol Biol Rep. 2021;48(6):5355–5362. DOI: 10.1007/s11033-021-06517-4

23. Thorolfsdottir R.B., Sveinbjornsson G., Aegisdottir H.M., Benonisdottir S., Stefansdottir L., Ivarsdottir E.V., Halldorsson G.H., Sigurdsson J.K., Torp-Pedersen C., Weeke P.E., Brunak S., Westergaard D., Pedersen O.B., Sorensen E., Nielsen K.R., Burgdorf K.S., Banasik K., Brumpton B., Zhou W., Oddsson A., Tragante V., Hjorleifsson K.E., Davidsson O.B., Rajamani S., Jonsson S., Torfason B., Valgardsson A.S., Thorgeirsson G., Frigge M.L., Thorleifsson G., Norddahl G.L., Helgadottir A., Gretarsdottir S., Sulem P., Jonsdottir I., Willer C.J., Hveem K., Bundgaard H., Ullum H., Arnar D.O., Thorsteinsdottir U., Gudbjartsson D.F., Holm H., Stefansson K. Genetic insight into sick sinus syndrome. Eur. Heart J. 2021;42(20):1959–1971. DOI: 10.1093/eurheartj/ehaa1108

24. Brennan J.A., Chen Q., Gams A., Dyavanapalli J., Mendelowitz D., Peng W., Efi mov I.R. Evidence of Superior and Inferior Sinoatrial Nodes in the Mammalian Heart. JACC Clin. Electrophysiol. 2020;6(14):1827–1840. DOI: 10.1016/j.jacep.2020.09.012

25. Fedorov V.V., Glukhov A.V., Chang R., Kostecki G., Aferol H., Hucker W.J., Wuskell J.P., Loew L.M., Schuessler R.B., Moazami N., Efi mov I.R. Optical mapping of the isolated coronary-perfused human sinus node. J. Am. Coll. Cardiol. 2010;56(17):1386-1394. DOI: 10.1016/j.jacc.2010.03.098

26. Lang D., Glukhov A.V. Cellular and molecular mechanisms of functional hierarchy of pacemaker clusters in the sinoatrial node: new insights into sick sinus syndrome. J. Cardiovasc. Dev. Dis. 2021;8(4):43. Published 2021 Apr 13. DOI: 10.3390/jcdd8040043

27. Grainger N., Guarina L., Cudmore R.H., Santana L.F. The Organization of the Sinoatrial Node Microvasculature Varies Regionally to Match Local Myocyte Excitability. Function (Oxf). 2021;2(4):zqab031. DOI: 10.1093/function/zqab031

28. Li N., Hansen B.J., Csepe T.A., Zhao J., Ignozzi A.J., Sul L.V., Zakharkin S.O., Kalyanasundaram A., Davis J.P., Biesiadecki BJ., Kilic A., Janssen P.M.L., Mohler P.J., Weiss R., Hummel J.D., Fedorov V.V. Redundant and diverse intranodal pacemakers and conduction pathways protect the human sinoatrial node from failure. Sci. Transl. Med. 2017;9(400):eaam5607. DOI: 10.1126/scitranslmed.aam5607

29. Fedorov V.V., Glukhov A.V., Chang R. Conduction barriers and pathways of the sinoatrial pacemaker complex: their role in normal rhythm and atrial arrhythmias. Am. J. Physiol. Heart Circ. Physiol. 2012;302(9):H1773–H1783. DOI: 10.1152/ajpheart.00892.2011

30. Csepe T.A., Zhao J., Hansen B.J., Li N., Sul L.V., Lim P., Wang Y., Simonetti O.P., Kilic A., Mohler P.J., Janssen P.M., Fedorov V.V. Human sinoatrial node structure: 3D microanatomy of sinoatrial conduction pathways. Prog. Biophys. Mol. Biol. 2016;120(1–3):164–178. DOI: 10.1016/j.pbiomolbio.2015.12.011

31. Fenske S., Pröbstle R., Auer F., Hassan S., Marks V., Pauza D.H., Biel M., Wahl-Schott C. Comprehensive multilevel in vivo and in vitro analysis of heart rate fluctuations in mice by ECG telemetry and electrophysiology. Nat. Protoc. 2016;11(1):61–86. DOI: 10.1038/nprot.2015.139

32. Fenske S., Hennis K., Rötzer R.D., Brox V.F., Becirovic E., Scharr A., Gruner C., Ziegler T., Mehlfeld V., Brennan J., Efimov I.R., Pauža A.G., Moser M, Wotjak C.T., Kupatt C, Gönner R, Zhang R, Zhang H, Zong X, Biel M, Wahl-Schott C. cAMP-dependent regulation of HCN4 controls the tonic entrainment process in sinoatrial node pacemaker cells. Nat. Commun. 2020;11(1):5555. DOI: 10.1038/s41467-020-19304-9

33. Maltsev A.V., Stern M.D., Lakatta E.G., Maltsev V.A. Functional Hete ro geneity of Cell Populations Increases Robustness of Pacemaker Function in a Numerical Model of the Sinoatrial Node Tissue. Front Physiol. 2022;13:845634. DOI: 10.3389/fphys.2022.845634

34. Linscheid N., Logantha S.J.R.J., Poulsen P.C., Zhang S., Schrölkamp M., Egerod K.L., Thompson J.J., Kitmitto A., Galli G., Humphries M.J., Zhang H., Pers T.H., Olsen J.V., Boyett M., Lundby A. Quantitative proteomics and single-nucleus transcriptomics of the sinus node elucidates the foundation of cardiac pacemaking. Nat. Commun. 2019;10(1):2889. DOI: 10.1038/s41467-019-10709-9

35. Karpaev A.A., Syunyaev R.A., Aliev R.R. Effects of fi broblast-myocyte coupling on the sinoatrial node activity: A computational study. Int. J. Numer Method. Biomed. Eng. 2018;34(5):e2966. DOI: 10.1002/cnm.2966

36. Hulsmans M., Clauss S., Xiao L., Aguirre A.D., King K.R., Hanley A., Hucker W.J., Wülfers E.M., Seemann G., Courties G., Iwamoto Y., Sun Y., Savol A.J., Sager H.B., Lavine K.J., Fishbein G.A., Capen D.E., Da Silva N., Miquerol L., Wakimoto H., Seidman C.E., Seidman J.G., Sadreyev R.I., Naxerova K., Mitchell R.N., Brown D., Libby P., Weissleder R., Swirski F.K., Kohl P., Vinegoni C., Milan D.J., Ellinor P.T., Nahrendorf M. Macrophages facilitate electrical conduction in the heart. Cell. 2017;169(3):510–522.e20. DOI: 10.1016/j.cell.2017.03.050

37. Chandler N., Aslanidi O., Buckley D., Inada S., Birchall S., Atkinson A., Kirk D., Monfredi O., Molenaar P., Anderson R., Sharma V., Sigg D., Zhang H., Boyett M., Dobrzynski H. Computer three-dimensional anatomical reconstruction of the human sinus node and a novel paranodal area. Anat. Rec. (Hoboken). 2011;294(6):970–979. DOI: 10.1002/ar.21379

38. Stephenson R.S., Atkinson A., Kottas P., Perde F., Jafarzadeh F., Bateman M., Iaizzo P.A., Zhao J., Zhang H., Anderson R.H., Jarvis J.C., Dobrzynski H. High resolution 3-Dimensional imaging of the human cardiac conduction system from microanatomy to mathematical modeling. Sci. Rep. 2017;7(1):7188. DOI: 10.1038/s41598-017-07694-8

39. Soattin L., Borbas Z., Caldwell J., Prendergast B., Vohra A., Saeed Y., Hoschtitzky A., Yanni J., Atkinson A., Logantha S.J., Borbas B., Garratt C., Morris G.M., Dobrzynski H. Structural and Functional Properties of Subsidiary Atrial Pacemakers in a Goat Model of Sinus Node Disease. Front Physiol. 2021;12:592229. DOI: 10.3389/fphys.2021.592229

40. Kusumoto F.M., Schoenfeld M.H., Barrett C., Edgerton J.R., Ellenbogen K.A., Gold M.R., Goldschlager N.F., Hamilton R.M., Joglar J.A., Kim R.J., Lee R., Marine J.E., McLeod C.J., Oken K.R., Patton K.K., Pellegrini C.N., Selzman K.A., Thompson A., Varosy P.D. 2018 ACC/AHA/HRS Guideline on the Evaluation and Management of Patients With Bradycardia and Cardiac Conduction Delay: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society [published correction appears in Circulation. 2019;140(8):e506–e508]. Circulation. 2019;140(8): e382–e482. DOI: 10.1161/CIR.0000000000000628

41. Weiss J.N., Qu Z. The Sinus Node: Still Mysterious After All These Years. JACC Clin. Electrophysiol. 2020;6(14):1841–1843. DOI: 10.1016/j.jacep.2020.09.017.

42. Moghtadaei M., Jansen H.J., Mackasey M., Rafferty S.A., Bogachev O., Sapp J.L., Howlett S.E., Rose R.A. The impacts of age and frailty on heart rate and sinoatrial node function. J. Physiol. 2016;594(23):7105–7126. DOI: 10.1113/JP272979


Review

For citations:


Milyukov V.E., Bryukhanov V.A., Nguyen С.С. Clinical realization of anatomical and physiological properties of the sinoatrial node. Clinical Medicine (Russian Journal). 2022;100(9-10):425-431. (In Russ.) https://doi.org/10.30629/0023-2149-2022-100-9-10-425-431

Views: 754


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)