Sarcopenia in patients with type 2 diabetes mellitus
https://doi.org/10.30629/0023-2149-2025-103-6-420-425
Abstract
Diabetes mellitus, as well as sarcopenia, are a common pathology among the elderly and senile. As the body ages, there is a gradual decrease in functioning muscle mass, which leads to the development of sarcopenia, given that muscle plays an important role in glucose homeostasis, this circumstance certainly affects the course of diabetes mellitus. The purpose of the review was to describe in detail the pathogenetic interactions of two age-related diseases sarcopenia and type 2 diabetes mellitus. Understanding the common pathogenesis will make it possible to understand the course of both diseases and determine the tactics of managing these patients. This, in turn, will slow down their progression, achieve and implement the concept of active, healthy aging, and prolong the period of high physical as well as functional activity.
About the Authors
R. N. ObedkovRussian Federation
Ruslan N. Obedkov — Resident of the Department of Hospital Therapy named after Academician G.I. Storozhakov of the Institute of Clinical Medicine
Moscow
E. I. Dedov
Russian Federation
Evgeny I. Dedov — Doctor of Medical Sciences, Professor of the Department of Hospital Therapy named after Academician G.I. Storozhakov; rheumatologist
Moscow
A. V. Modestova
Russian Federation
Anna V. Modestova — Candidate of Medical Sciences, Associate Professor of the Department of Hospital Therapy named after Academician G.I. Storozhakov of the I nstitute of Clinical Medicine
Moscow
V. A. Kokorin
Russian Federation
Valentin A. Kokorin — Doctor of Medical Sciences, Head of the Department of Hospital Therapy with courses in Endocrinology, Hematology and Clinical Laboratory Diagnostics; Professor of the Department of Hospital Therapy named after Academician P.E. Lukomsky of the Institute of Clinical Medicine
Moscow
I. G. Pshennikova
Russian Federation
Irina G. Pshennikova — Endocrinologist
Moscow
References
1. Algorithms of specialized medical care for patients with diabetes mellitus. Edited by I.I. Dedov, M.V. Shestakova, A.Y. Mayorov. 11th edition. M. 2023. (In Russian). DOI: 10.14341/DM13042
2. Shestakova M.V., Vikulova O.K., Zheleznyakova A.V. and others. Epidemiology of diabetes mellitus in the Russian Federation: What has changed in the last decade? Therapeutic Archive. 2019;91(10):4–13. (In Russian). DOI: 10.26442/00403660.2019.10.000364
3. Izzo A., Massimino E., Riccardi G. et al. A narrative review on sarcopenia in type 2 diabetes mellitus: prevalence and associated factors. Nutrients. 2021;13(1):183. DOI: 10.3390/nu13010183
4. Liccini A., Malmstrom T.K. Frailty and sarcopenia as predictors of adverse health outcomes in persons with diabetes mellitus. J. Am. Med. Dir. Assoc. 2016;17(9):846–851. DOI: 10.1016/j.jamda.2016.07.007
5. Kawada T. Mortality risk of sarcopenia in older subjects. J. Am. Med. Dir. Assoc. 2021;22(9):1883. DOI: 10.1016/j.jamda.2021.04.011.
6. Xu J., Wan C.S., Ktoris K. et al. Sarcopenia is associated with mortality in adults: a systematic review and meta-analysis. Gerontology. 2022;68(4):361–376. DOI: 10.1159/000517099
7. Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M., Boirie Y., Cederholm T., Landi F., Martin F.C., Michel J.P., Rolland Y., Schneider S.M., Topinkova E., Vandewoude M., Zamboni M. Sarcopenia: European consensus on defi nition and diagnosis - Report of the European working group on Sarcopenia in older people. Age Ageing. 2010;39:412–423. DOI: 10.1093/ageing/afq034
8. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., Schneider S.M., Sieber C.C., Topinkova E., Vandewoude M., Visser M., Zamboni M. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2.
9. Ametov A.S., Pugovkina Ya.V. Glucose homeostasis and metabolic fl exibility in healthy people. Endocrinology: news, opinions, training. 2020;9(4):12–22. (In Russian). DOI: 10.33029/2304-9529-2020-9-4-12-22
10. Mesinovic J., Zengin A., De Courten B., Ebeling P.R. and Scott D. Sarcopenia and type 2 diabetes mellitus: A bidirectional relationship. Diabetes Metab. Syndr. Obes. 2019;12:1057–1072. DOI: 10.2147/DMSO.S186600
11. Rizvi A.A., Rizzo M. Age-Related Changes in Insulin Resistance and Muscle Mass: Clinical Implications in Obese Older Adults. Medicina (Kaunas). 2024;60(10):1648. DOI: 10.3390/medicina60101648.
12. Wu H., Liu M., Chi V.T.Q. et al. Handgrip strength is inversely associated with metabolic syndrome and its separate components in middle aged and older adults: a large-scale population-based study. Metabolism. 2019;93:61–67.
13. Zamboni M., Gattazzo S., Rossi A.P. Myosteatosis: a relevant, yet poorly explored element of sarcopenia. Eur. Geriatr. Med. 2019;10(1):5–6. DOI: 10.1007/s41999-018-0134-3
14. Topolyanskaya SV. Adipose tissue and adipokines in the elderly. Clin. Gerontol. 2020; 26 (7-8): 57-63. DOI: 10.26347/1607-2499202007-08057-063.
15. Mitchell W.K., Williams J., Atherton P. et al. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260. DOI: 10.3389/fphys.2012.00260
16. Cretoiu D., Pavelescu L., Duica F., Radu M., Suciu N., Cretoiu S.M. Myofi bers. Adv. Exp. Med. Biol. 2018;1088:23–46. DOI: 10.1007/978-981-13-1435-3_2.
17. Coelho-Junior H.J., Picca A., Calvani, R., Uchida M.C., Marzetti E. If my muscle could talk: Myokines as a biomarker of frailty. Exp. Gerontol. 2019;127:110715 DOI: 10.1016/j.exger.2019.110715
18. Briana D.D., Malamitsi-Puchner A. Developmental origins of adult health and disease: The metabolic role of BDNF from early life to adulthood. Metabolism. 2018;81:45–51. DOI: 10.1016/j.metabol.2017.11.019
19. Levy M.J.F., Boulle F., Steinbusch H.W., van den Hove D.L.A., Kenis G., Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology. 2018;235:2195–2220. DOI: 10.1007/s00213-018-4950-4
20. Chen W., Wang L., You W., Shan T. Myokines mediate the cross talk between skeletal muscle and other organs. J. Cell. Physiol. 2021;236:2393–2412. DOI: 10.1002/jcp.30033:
21. Wacker M., Holick MF. Vitamin D-eff ects on skeletal and extraskeletal health and the need for supplementation. Nutrients. 2013;5(1):111–48. DOI: 10.3390/nu5010111
22. Wintermeyer E., Ihle C., Ehnert S., Stöckle U., Ochs G., De Zwart P. et al. Crucial role of vitamin D in the musculoskeletal system. Nutrients. 2016;8(6):319. DOI: 10.3390/nu8060319
23. Oshiro CE., Hillier TA., Edmonds G., Peterson M., Hill PL, Hampson S. Vitamin D defi ciency and insuffi ciency in Hawaii: levels and sources of serum vitamin D in older adults. Am. J. Hum. Biol. 2022;34(3):e23636. DOI: 10.1002/ajhb.23636
24. Gallagher J.C. Vitamin D and aging. Endocr. Metab. Clin. 2013;42(2):319–32. DOI: 10.1016/j.ecl.2013.02.004.
25. Uchitomi R., Oyabu M., Kamei Y. Vitamin D and sarcopenia: potential of vitamin D supplementation in sarcopenia prevention and treatment. Nutrients. 2020;12(10):3189. DOI: 10.3390/nu12103189
26. Remelli F., Vitali A., Zurlo A. et al. Vitamin D defi ciency and sarcopenia in older persons. Nutrients. 2019;11(12):2861. DOI: 10.3390/nu11122861
27. Kalyani R.R., Metter E.J., Egan J. et al. Hyperglycemia predicts persistently lower muscle strength with aging. Diabetes Care. 2015;38(1):82–90. DOI: 10.2337/dc14-1166
28. Yaribeygi H., Farrokhi F.R., Butler A.E. et al. Insulin resistance: review of the underlying molecular mechanisms. J. Cell. Physiol. 2019;234(6):8152–8161. DOI: 10.1002/jcp.27603
29. Liu Z.J., Zhu C.F. Causal relationship between insulin resistance and sarcopenia. Diabetol. Metab. Syndr. 2023;15(1):46. DOI: 10.1186/s13098-023-01022-z.
30. Giha H.A., Alamin O.A.O., Sater M.S. Diabetic sarcopenia: metabolic and molecular appraisal. Acta Diabetol. 2022;59(8):989– 1000. DOI: 10.1007/s00592-022-01883-2
31. Goossens G.H., Blaak E.E., Theunissen R. et al. Expression of NLRP3 infl ammasome and T cell population markers in adipose tissue are associated with insulin resistance and impaired glucose metabolism in humans. Mol. Immunol. 2012;50(3):142–149. DOI: 10.1016/j.molimm.2012.01.005
32. Mcbride M.J., Foley K.P., D’souza D.M. et al. The NLRP3 infl ammasome contributes to sarcopenia and lower muscle glycolytic potential in old mice. Am. J. Physiol. Endocrinol. Metab. 2017;313(2):E222– E232. DOI: 10.1152/ajpendo.00060.2017
33. Shimizu N. et al. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell. Metab. 2011;13(2):170–182. DOI: 10.1016/j.cmet.2011.01.001.
34. Hirata Y., Nomura K., Senga Y., Okada Y., Kobayashi K., Okamoto S., Minokoshi Y., Imamura M., Takeda S., Hosooka T., Ogawa W. Hyperglycemia induces skeletal muscle atrophy via a WWP1/ KLF15 axis. JCI Insight. 2019;4(4):e124952. DOI: 10.1172/jci.insight.124952.
35. Dasarathy S., Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J. Hepatol. 2016;65(6):1232–1244. DOI: 10.1016/j.jhep.2016.07.040
36. Yoshida T., Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells. 2020;9(9):1970. DOI: 10.3390/cells9091970
37. Bassil M.S., Gougeon R. Muscle protein anabolism in type 2 diabetes. Curr. Opin. Clin. Nutr. Metab. Care. 2013;16(1):83–88. DOI: 10.1097/MCO.0b013e32835a88ee
38. Kalyani R.R., Corriere M., Ferrucci L. Age-related and diseaserelated muscle loss: the eff ect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014;2(10):819–829. DOI: 10.1016/S2213-8587(14)70034-8
39. Qiu J., Thapaliya S., Runkana A. et al. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-kappaB-mediated mechanism. Proc. Natl. Acad. Sci. USA. 2013;110(45):18162–18167. DOI: 10.1073/pnas.1317049110
40. Wang X.H., Mitch W.E. Mechanisms of muscle wasting in chronic kidney disease. Nat. Rev. Nephrol. 2014;10(9):504–516. DOI: 10.1038/nrneph.2014.112
41. Bataille S., Chauveau P., Fouque D. et al. Myostatin and muscle atrophy during chronic kidney disease. Nephrol. Dial. Transplant. 2021;36(11):1986–1993. DOI: 10.1093/ndt/gfaa129
42. Baczek J., Silkiewicz M., Wojszel Z.B. Myostatin as a biomarker of muscle wasting and other pathologies-state of the art and knowledge gaps. Nutrients. 2020;12(8):2401. DOI: 10.3390/nu12082401
43. Donath M.Y., Shoelson S.E. Type 2 diabetes as an infl ammatory disease. Nat. Rev. Immunol. 2011;11(2):98–107. DOI: 10.1038/nri2925
44. Perry B.D., Caldow M.K., Brennan-Speranza T.C. et al. Muscle atrophy in patients with type 2 diabetes mellitus: roles of infl ammatory pathways, physical activity and exercise. Exerc. Immunol. Rev. 2016;22:94–109 PMID: 26859514; PMCID: PMC5545118
45. Zhang X., Li H., He M. et al. Immune system and sarcopenia: presented relationship and future perspective. Exp. Gerontol. 2022;164:111823. DOI: 10.1016/j.exger.2022.111823
46. Goyal R., Faizy A.F., Siddiqui S.S. et al. Evaluation of TNF-alpha and IL-6 levels in obese and non-obese diabetics: pre- and postinsulin eff ects. N. Am. J. Med. Sci. 2012;4(4):180–184. DOI: 10.4103/1947-2714.94944
47. Omura T., Araki A. Skeletal muscle as a treatment target for older adults with diabetes mellitus: the importance of a multimodal intervention based on functional category. Geriatr Gerontol. Int. 2022;22(2):110–120. DOI: 10.1111/ggi.14339
48. Bowen T.S., Schuler G., Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J. Cachexia Sarcopenia Muscle. 2015;6(3):197– 207. DOI: 10.1002/jcsm.12043
49. Hyatt H.W., Powers S.K. The role of calpains in skeletal muscle remodeling with exercise and inactivity-induced atrophy. Int. J. Sports Med. 2020;41(14):994–1008. DOI: 10.1055/a-1199-7662
50. Huang J., Zhu X. The molecular mechanisms of calpains action on skeletal muscle atrophy. Physiol. Res. 2016;65(4):547–560. DOI: 10.33549/physiolres.933087
51. Suzuki A., Yabu A., Nakamura H. Advanced glycation end products in musculoskeletal system and disorders. Methods. 2022;203:179– 186. DOI: 10.1016/j.ymeth.2020.09.012
52. Forbes J.M., Sourris K.C., De Courten M.P. et al. Advanced glycation end products (AGEs) are cross-sectionally associated with insulin secretion in healthy subjects. Amino Acids. 2014;46(2):321–326. DOI: 10.1007/s00726-013-1542-9
53. Cleasby M.E., Jamieson P.M. Atherton P.J. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J. Endocrinol. 2016;229(2):R67–81. DOI: 10.1530/JOE-15-0533
54. Jimenez-Gutierrez G.E., Martínez-Gómez L.E., Martínez-Armenta C. et al. Molecular mechanisms of infl ammation in sarcopenia: diagnosis and therapeutic update. Cells. 2022;11(15):2359. DOI: 10.3390/cells11152359
55. Csapo R., Malis V., Sinha U. et al. Age-associated diff erences in triceps surae muscle composition and strength - an MRI-based crosssectional comparison of contractile, adipose and connective tissue. BMC Musculoskelet Disord. 2014;15:209. DOI: 10.1186/1471-2474-15-209.
Review
For citations:
Obedkov R.N., Dedov E.I., Modestova A.V., Kokorin V.A., Pshennikova I.G. Sarcopenia in patients with type 2 diabetes mellitus. Clinical Medicine (Russian Journal). 2025;103(6):420-425. (In Russ.) https://doi.org/10.30629/0023-2149-2025-103-6-420-425
































