

Genetic markers of predisposition to obesity and their impact on metabolism
https://doi.org/10.30629/0023-2149-2025-103-4-286-293
Abstract
Genetic markers of obesity play a crucial role in understanding the pathogenesis of this multifactorial disease, which is one of the major public health problems of the 21st century. In the past decade, numerous genetic variants associated with obesity have been identified thanks to the development of genome-wide association studies. Among the most studied genes are FTO, MC4R, TMEM18, NEGR1, and BDNF. Polymorphisms in these genes are associated with various aspects of appetite regulation, metabolism, and fat tissue accumulation. Objective of this study is to investigate the role of genetic and epigenetic factors in the development of obesity and their integration with environmental factors to develop personalized strategies for the prevention and treatment of this condition. Material and methods. The study utilized data from genome-wide association studies (GWAS), epigenetic analyses (DNA methylation and histone modifications), as well as an analysis of external factors (nutrition, physical activity, and others). This comprehensive approach allows for the integration of these data to gain a deeper understanding of the molecular mechanisms underlying obesity. Results. The findings confirmed the significance of genetic markers such as FTO, MC4R, TMEM18, NEGR1, and BDNF in regulating appetite, metabolism, and fat tissue accumulation. Epigenetic changes, including DNA methylation and histone modifications, also had a significant impact on the development of obesity. It was found that external factors such as diet and physical activity could induce epigenetic changes that promote fat tissue accumulation. Conclusion. The integration of data from genome-wide association studies, epigenetic research, and the analysis of external factors represents a promising direction for developing personalized strategies for the prevention and treatment of obesity. This comprehensive approach will enhance our understanding of the molecular mechanisms underlying obesity and create more effective and targeted therapeutic methods that consider individual genetic and epigenetic characteristics of patients.
Keywords
About the Authors
V. V. KrasnoborodkoRussian Federation
Viktoriia V. Krasnoborodko — student
Krasnodar
S. M. Bashirova
Russian Federation
Seda M. Bashirova — student
Moscow
D. M. Remizova
Russian Federation
Daria M. Remizova — student
Moscow
A. A. Reger
Russian Federation
Aleksandr A. Reger — student
Moscow
D. Yu. Osipova
Russian Federation
Daria Yu. Osipova — student
Cheboksary
References
1. Dedov I.I., Melnichenko G.A., Shestakova M.V., Troshina E.A., Mazurina N.V., Shestakova E.A. et al. Russian national clinical recommendations for morbid obesity treatment in adults. 3rd revision (Morbid obesity treatment in adults). Obesity and metabolism. 2018;15(1):53–70. (In Russian)]. DOI: 10.14341/omet2018153-70
2. Alferova V.I., Mustafi na S.V. The prevalence of obesity in the adult population of the Russian Federation (literature review). Obesity and metabolism. 2022;19(1):96–105. (In Russian)]. DOI: 10.14341/omet12809
3. Peresetskaya O.V., Kozlova L.V., Larionova V.I. The signifi cance of genetic marker studies in the treatment and prevention of obesity in children and adolescents. Doctor.Ru. 2024;23(3):67–72. (In Russian)]. DOI: 10.31550/1727-2378-2024-23-3-67-72
4. Artemenko YS., Khanoshina MB., Orazov MR., Mullina IA., Azova MM. Genetic markers of obesity and related reproductive complications: current state of the problem. Obstetrics and gynecology: news, opinions, training. 2021;9(3):48–55. (In Russian)]. DOI: 10.33029/2303-9698-2021-9-3suppl-48-55
5. Drapkina OM., Kim OT. Epigenetics of obesity. Cardiovascular Therapy and Prevention. 2020;19(6):2632. (In Russian). DOI: 10.15829/1728-8800-2020-2632
6. Botello-Manilla A.E., Chávez-Tapia N.C., Uribe M., Nuño-Lámbarri N. Genetics and epigenetics purpose in nonalcoholic fatty liver disease. Expert Rev. Gastroenterol. Hepatol. 2020;14(8):733–748. DOI: 10.1080/17474124.2020.1780915
7. Czajkowski P., Adamska-Patruno E., Bauer W., Fiedorczuk J., Krasowska U., Moroz M., Gorska M., Kretowski A. The Impact of FTO Genetic Variants on Obesity and Its Metabolic Consequences is Dependent on Daily Macronutrient Intake. Nutrients. 2020;12(11):3255. DOI: 10.3390/nu12113255
8. Salazar-Tortosa D.F., Labayen I., González-Gross M., Seral Cortes M., Moreno L.A., Zapico A. et al. Association between PTPN1 polymorphisms and obesity-related phenotypes in European adolescents: infl uence of physical activity. Pediatr. Res. 2023;93(7):2036–2044. DOI: 10.1038/s41390-022-02377-1
9. Kadioglu E., Altun B., İpek Ç., Döğer E., Bideci A., Attaran H., Çok İ. The role of DENND1A and CYP19A1 gene variants in individual susceptibility to obesity in Turkish population-a preliminary study. Mol. Biol. Rep. 2018;45(6):2193–2199. DOI: 10.1007/s11033-018-4380-8
10. Kaur Y., Wang D.X., Liu H.Y., Meyre D. Comprehensive identifi cation of pleiotropic loci for body fat distribution using the NHGRI-EBI Catalog of published genome-wide association studies. Obes. Rev. 2019;20(3):385–406. DOI: 10.1111/obr.12806
11. Mattar J.M., Majchrzak M., Iannucci J., Bartman S., Robinson J.K., Grammas P. Sex diff erences in metabolic indices and chronic neuroinfl ammation in response to prolonged high-fat diet in ApoE4 Knock-In Mice. Int. J. Mol. Sci. 2022;23(7):3921. DOI: 10.3390/ijms23073921
12. Paniri A., Hosseini M.M., Fattahi S., Amiribozorgi G., Asouri M., Maadi M. et al. Genetic variations in IKZF3, LET7-a2, and CDKN2B-AS1: Exploring associations with metabolic syndrome susceptibility and clinical manifestations. J. Clin. Lab. Anal. 2024;38(1–2):e24999. DOI: 10.1002/jcla.24999
13. Aly O., Zaki H.H., Herzalla M.R., Fathy A., Raafat N., Hafez M.M. Gene polymorphisms of Patatin-like phospholipase domain containing 3 (PNPLA3), adiponectin, leptin in diabetic obese patients. PLoS One. 2020;15(6):e0234465. DOI: 10.1371/journal.pone.0234465
14. Souto A.C., Miname M.H., Fukushima J., Jannes C.E., Krieger J.E., Hagger M., Pereira A.C., Santos R.D. Health related quality of life in individuals at high risk for familial hypercholesterolemia undergoing genetic cascade screening in Brazil. Atherosclerosis. 2018;277:464-469. DOI: 10.1016/j.atherosclerosis.2018.05.036
15. Abaturov AE, Nikulina AA. Obesity phenotypes in children, clinical manifestations and genetic associations. Child’s health. 2020;15(4):238–251. (In Russian)]. DOI: 10.22141/2224-0551.15.4.2020.208476
16. Elagin I.B., Orazov M.R., Semenov P.A. Pathogenesis of impaired fertility in obese women. Diffi cult patient. 2020;18(1–2):36–43. (In Russian)]. DOI: 10.24411/2074-1995-2020-10007
17. Timasheva Ya.R., Balkhiyarova Zh.R., Kochetova O.V. Current state of obesity research: genetic aspects, role of the microbiome and susceptibility to COVID-19. Problems of Endocrinology. 2021;67(4):20–35. (In Russian). DOI: 10.14341/probl12775
18. Wedell-Neergaard A.S., Krogh-Madsen R., Petersen G.L., Hansen Å.M., Pedersen B.K., Lund R., Bruunsgaard H. Cardiores piratory fi tness and the metabolic syndrome: Roles of infl ammation and abdominal obesity. PLoS One. 2018;13(3):e0194991. DOI: 10.1371/journal.pone.0194991
19. Takezawa J., Yamada K., Miyachi M., Morita A., Aiba N., Sasaki S., Watanabe S. Saku Control Obesity Program (SCOP) Study Group. Preproghrelin gene polymorphisms in obese Japanese women. Minor homozygotes are light eaters, do not prefer protein or fat, and apparently have a poor appetite. Appetite. 2013;63:105–11. DOI: 10.1016/j.appet.2012.12.006
20. Llamas-Covarrubias I.M., Llamas-Covarrubias M.A., Martinez López E., Zepeda-Carrillo E.A., Rivera-León E.A., Palmeros Sánchez B. et al. Association of A-604G ghrelin gene polymorphism and serum ghrelin levels with the risk of obesity in a mexican population. Mol. Biol. Rep. 2017;44(3):289–293. DOI: 10.1007/s11033-017-4109-0
21. Çetinkaya S., Güran T., Kurnaz E., Keskin M., Sağsak E., Savaş Erdeve S. et al. A patient with proopiomelanocortin defi ciency: an increasingly important diagnosis to make. J. Clin. Res. Pediatr. Endocrinol. 2018;10(1):68–73. DOI: 10.4274/jcrpe.4638
22. Shabana, Shahid S.U., Hasnain S. Identifi cation of genetic basis of obesity and mechanistic link of genes and lipids in Pakistani population. Biosci. Rep. 2018;38(4):BSR20180281. DOI: 10.1042/BSR20180281
23. Ramos-Lopez O., Riezu-Boj J.I., Milagro F.I., Cuervo M., Goni L., Martinez J.A. Prediction of Blood Lipid Phenotypes Using Obesity Related Genetic Polymorphisms and Lifestyle Data in Subjects with Excessive Body Weight. Int. J. Genomics. 2018;2018:4283078. DOI: 10.1155/2018/4283078
24. Gimeno-Ferrer F., Albuquerque D., García Banacloy A., Guzmán Luján C., Vidal Garcia C., Marcaida Benito G. et al. Genetic screening for MC4R gene identifi es three novel mutations associated with severe familiar obesity in a cohort of Spanish individuals. Gene. 2019;704:74–79. DOI: 10.1016/j.gene.2019.04.018
25. Klyosov R.A., Stepanova O.I. Genetic biomodels of metabolic syndrome. Biomedicine. 2018;(1):50–58. (In Russian).
26. Kim Y.J., Greimel P., Hirabayashi Y. GPRC5B-Mediated Sphingomyelin Synthase 2 Phosphorylation Plays a Critical Role in Insulin Resistance. iScience. 2018;8:250–266. DOI: 10.1016/j.isci.2018.10.001
27. Serizay J., Dong Y., Jänes J., Chesney M., Cerrato C., Ahringer J. Tissue-specifi c profi ling reveals distinctive regulatory architectures for ubiquitous, germline and somatic genes. BioRxiv. 2020. DOI: 10.1101/2020.02.20.958579
28. Loos .RJ.F., Janssens A.C.J.W. Predicting Polygenic Obesity Using Genetic Information. Cell. Metab. 2017;25(3):535–543. DOI: 10.1016/j.cmet.2017.02.013
29. Randall J.C., Winkler T.W., Kutalik Z., Berndt S.I., Jackson A.U., Monda K.L. et al. Sex-stratifi ed genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 2013;9(6):e1003500. DOI: 10.1371/journal.pgen.1003500
30. Wang T., Ma X., Peng D., Zhang R., Sun X., Chen M. et al. . Effects of obesity related genetic variations on visceral and subcutaneous fat distribution in a chinese population. Sci. Rep. 2016;6:20691. DOI: 10.1038/srep20691
31. Grechukhina E.I., Grechukhina M.I., Kyvyrzhik D.S., Startsev V.Y.U, Lebedeva E.H. The fto gene as a genetic risk factor for obesity. Universum: medicine and pharmacology. 2019;2(57). (In Russian).
Review
For citations:
Krasnoborodko V.V., Bashirova S.M., Remizova D.M., Reger A.A., Osipova D.Yu. Genetic markers of predisposition to obesity and their impact on metabolism. Clinical Medicine (Russian Journal). 2025;103(4):286-293. (In Russ.) https://doi.org/10.30629/0023-2149-2025-103-4-286-293