

Актуальные представления о геноме и его значение в формировании зависимости от психоактивных веществ
https://doi.org/10.30629/0023-2149-2025-103-4-272-278
Аннотация
Полтора столетия назад Чезаре Ламброзо, опираясь на антропологическое исследование Homo delinquent в криминологии, предвосхитил методологию фенотипирования. Бурное развитие постгеномных представлений способствовало определению генов, ответственных за аддиктивную уязвимость, в то же время определяющих предрасположенность к другим психическим расстройствам. Изучение общегеномных ассоциаций (GWAS) позволяет одновременно учесть генетические детерминанты прогноза особенностей фенотипа, включающих поведенческие криминальные проявления и какие-либо варианты зависимости от психоактивных веществ. Идентификация генетически детерминированного коморбидного девиантного поведения и «предзависимости» может способствовать формированию особого внимания к рискам, связанным с ранними стадиями поведенческих расстройств и употребления психоактивных веществ, а также построению государственной политики, пенитенциарной системы и ресурсов здравоохранения, которые будут поддерживать меры медицинской профилактики и раннего вмешательства.
Об авторах
С. Х. СарманаевРоссия
Сарманаев Салават Хамитович — д-р мед. наук, профессор, заместитель заведующего Токсикологическим центром
Москва
Г. Н. Суворов
Россия
Суворов Георгий Николаевич — канд. юрид. наук, доцент кафедры общественного здоровья и здравоохранения Академии постдипломного образования ФГБУ ФНКЦ ФМБА
Москва
Список литературы
1. Chrostek L. et al. Gender-related diff erences in hepatic activity of alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in humans. J. Clin. Lab. Anal. 2003;17:93–96.
2. Lynch M. Science, truth, and forensic cultures: The exceptional legal status of DNA evidence. Studies in History and Philosophy of Biological and Biomedical Sciences. 2013;44(1):60–70.
3. Volkow N.D. et al. The Role of Science in Addressing the Opioid Crisis. NEJM. 2017 May 31. DOI: 10.1056/NEJMsr1706626
4. Sex and gender diff erences in substance use. National Institute on Drug Abuse. 2020. URL: https://nida.nih.gov/publications/research-reports/substance-use-in-women...
5. Schiller E.Y. et al. Opioid Overdose. Treasure Island: StatPearls Publishing, 2022. URL: http://www.ncbi.nlm.nih.gov/books/NBK470415/
6. Centers for Disease Control and Prevention. Vital Statistics Rapid Release — Provisional Drug Overdose Data. 2022. URL: https://www.cdc.gov/nchs/nvss/vsrr/drug-overdose-data.htm
7. American Medical Association. Issue brief: Nation’s drug-related overdose and death epidemic continues to worsen. 2022. URL: https://www.ama-assn.org/system/files/issue-brief-increases-in-opioid-re...
8. Substance Use and Co-Occurring Mental Disorders. National Institute of Mental Health (NIMH). 2022. URL: https://www.nimh.nih.gov/health/topics/substance-use-and-mental-health
9. Tiihonen J. et al. Genetic background of extreme violent behavior. Mol. Psychiatry. 2015;20(6):786-92.
10. Ezzati M. et al. Selected major risk factors and global and regional burden of disease. Lancet. 2002;360:1347–1360.
11. Kendler K.S. et al. The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women. Arch. Gen. Psychiatry. 2003;60:929–937.
12. Gratacos M. et al. Brain-derived neurotrophic factor Val66Met and psychiatric disorders: meta-analysis of case–control studies confi rm association to substancerelated disorders, eating disorders, and schizophrenia. Biol. Psychiatry. 2007;61:911–922.
13. Kendler K.S. et al. Genetic and environmental infuences on alcohol, cafeine, cannabis, and nicotine use from early adolescence to middle adulthood. Arch. Gen. Psychiatry. 2008;65:674–682.
14. Li M.D. et al. New insights into the genetics of addiction. Nat. Rev. Genet. 2009;10(4):225–31.
15. Torgeirsson T.E. et al. Sequence variants at CHRNB3–CHRNA6 and CYP2A6 afect smoking behavior. Nat. Genet. 2010;42: 448–453.
16. Furberg H. et al. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet. 2010;42:441–447.
17. Hicks B.M. et al. Psychometric and genetic architecture of substance use disorder and behavioral disinhibition measures for gene association studies. Behav. Genet. -2011. -41, 459–475.
18. Bierut L.J. et al. ADH1B is associated with alcohol dependence and alcohol consumption in populations of European and African ancestry. Mol. Psychiatry. -2012. -17, 445–450.
19. Polderman T.J. et al. Meta-analysis of the heritability of human traits based on ff y years of twin studies.. Nat. Genet. -2015. -47, 702–709.
20. Torgeirsson T.E. et al. A rare missense mutation in CHRNA4 associates with smoking behavior and its consequences. Mol. Psychiatry. 2016;21:594–600.
21. Schumann G. et al. KLB is associated with alcohol drinking, and its gene product β-Klotho is necessary for FGF21 regulation of alcohol preference. Proc. Natl. Acad. Sci. USA. 2016;113:14372–14377.
22. Jorgenson E. et al. Genetic contributors to variation in alcohol consumption vary by race/ethnicity in a large multi-ethnic genome-wide association study. Mol. Psychiatry. 2017;22:1359–1367.
23. Liu M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 2019;51:237–244.
24. Machado H. et al. DNA Technologies in criminal investigation and courts /In: Forensic genetics in the governance of crime. Palgrave Pivot. Singapore. 2020. DOI: 10.1007/978-981-15-2429-5_4.
25. Enich M. et al. Peer health navigation experiences before and after prison release among people with opioid use disorder. Psychiatr. Serv. 2023;1;74(7):737–745.
26. Meade A.M. et al. Methods for delivering the UK’s multi-centre prison-based naloxone-on-release pilot randomised trial (N-ALIVE): Europe’s largest prison-based randomised controlled trial. Drug Alcohol Rev. 2018;37(4):487–498.
27. Сайт Уголовно-исполнительной системы Российской Федерации. URL: https://fsin.gov.ru/structure/inspector/iao/statistika/Kratkaya%20har-ka%20UIS/.
28. Brook J.S. et al. Aggression, intrapsychic distress and drug use: antecedent and Intervening Processes. J. Am. Acad. Child. Adolesc. Psychiatry. 1995;34(8):1077 –1084.
29. Brennan P. Biosocial risk factors and juvenile violence. Federal Probation. 1999;63(2):58–60.
30. L’Uomo delinquente, 1876; L’uomo delinquente in rapporto all’ antropologia, alla giurisprudenza ed alle discipline carcerarie: aggiuntavi La teoria della tutela penale del Prof. Avv. F. Poletti. Cesare Lombroso; Francisco Poletti. 2 ed. Torino: Bocca, 1878:746.
31. Winkler H. Verbreitung und Ursache der Parthenogenesis im Pflanzen- und Tierreiche. 1920. Jena: Gustav Fischer Verlag. 250 s
32. Galton F. Short Notes on Heredity, etc., in Twins. J. Anthropo.l Inst. 1875;5:324–329.
33. Siemens H. Die Zwillingspathologie, Springer-Verlag, 1924. Berlin.
34. Rende R.D. et al. Who discovered the twin method? Behavior Genetics. 1990;20(2):277–285.
35. Siemens H.W. Die Zwillingspathologie. Z.Ver-erbungslehre. 1924;35:311–312.
36. Kendler K. et al. Illicit psychoactive substance use, heavy use, abuse, and dependence in a US populationbased sample of male twins. Archives Of General Psychiatry. 2000;57(3):261–269.
37. Cloninger C.R. Implications of sex diff erences in the prevalences of antisocial personality, alcoholism, and criminality for familial transmission. Archives of General Psychiatry. 1978;35(8):941.
38. Bohman M. Some genetic aspects of alcoholism and criminality. A population of adoptees. Arch. Gen. Psychiatry. 1978;35(3):269–276.
39. Sanger F. et al. DNA sequencing with chain-terminating inhibitors. Proc Natl. Acad. Sci. USA. 1977;74(12):5463–5467.
40. Mullis K.B. The unusual origin of the polymerase chain reaction. Scientifi c American. 1990;4:56–61.
41. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931-945.
42. Human genome: Genomes by the thousand. Nature. 2010;467:1026-1027.
43. 1000 Genomes Project Consortium, Auton A. et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.
44. Натальин П. 454-секвенирование ( высокопроизвдительное пиросеквенирование ДНК). Биомолекула. 2008. URL: https://biomolecula.ru/articles/454-sekvenirovanie-vysokoproizvoditelnoe-pirosekve-nirovanie-dnk
45. Lynch M. et al. Truth machine: The contentious history of DNA fingerprinting. 2008. Chicago: University of Chicago Press.
46. Ducci F. et al. The genetic basis of addictive disorders. Psychiatr. Clin. North Am. 2012;35(2):495–519.
47. Fedorenko O.Yu. et al. Association of PIP4K2A polymorphisms with alcohol use disorder. Genes. 2021;12(10):1642. DOI: 10.3390/genes12101642
48. Modena B.D. et al. Leveraging genomics to uncover the genetic, environmental and age-related factors leading to asthma. in Genomic and Precision Medicine. Ed.: G.S. Ginsburg, et al. 3rd Edition. 2019: 331–381. Hardback ISBN: 9780128014967 DOI: 10.1016/b978-0-12-801496-7.00018-6.
49. Feinn R. et al. Meta-analysis of the association of a functional serotonin transporter promoter polymorphism with alcohol dependence. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005;133B:79–84.
50. Munafo M.R. et al. The genetics basis for smoking behavior: a systematic review and metaanalysis. Nicotine Tob. Res. 2004;6:583-597.
51. Stapleton J.A. et al. Association between dopamine transporter genotypes and smoking cessation: a meta-analysis. Addict. Biol. 2007;12:221–226.
52. Munafo M.R. et al. Association of the DRD2 gene Taq1A polymorphism and alcoholism: a meta-analysis of case–control studies and evidence of publication bias. Mol. Psychiatry. 2007;12:454–461.
53. Smith L. et al. Meta-analysis of the association of the Taq1A polymorphism with the risk of alcohol dependency: a HuGE genedisease association review. Am. J. Epidemiol. 2008;167:125–138.
54. Foll B.L. et al. Genetics of dopamine receptors and drug addiction: a comprehensive review. Behav. Pharmacol. 2009;20:1–17.
55. Li M.D. et al. Progress in searching for susceptibility loci and genes for smoking-related behaviour. Clin. Genet. 2004;66:382–392.
56. Blum K. et al. Why haven’t we solved the addiction crisis?. J. Neurol. Sci. 2022;442:120404.
57. Marcos M. et al. Interleukin-10 gene polymorphism is associated with alcoholism but not with alcoholic liver disease. Alcohol. 2008;43:523–528.
58. Gratacos M. et al. Brain-derived neurotrophic factor Val66Met and psychiatric disorders: meta-analysis of case–control studies confirm association to substancerelated disorders, eating disorders, and schizophrenia. Biol. Psychiatry. 2007; 61:911–922.
59. Снытков Е.В. и др. Роль генетического полиморфизма и межгенных взаимодействий в формировании наркотической зависимости у человека. Молекулярная и прикладная генетика. 2020;29:70–85.
60. Edwards S.L. et al. Beyond GWASs: illuminating the dark road from association to function. The American Journal of Human Genetics. 2013;93(5):779–797.
61. Visscher P.M. et al. 10 years of GWAS discovery: biology, function, and translation. The American Journal of Human Genetics. 2017;101(1):5–22.
62. Полоников А.В. и др. Биоинформатические инструменты и интернет-ресурсы для оценки регуляторного потенциала по лиморфных локусов, установленных полногеномными ассоци ативными исследованиями мультифакториальных заболеваний. Научные результаты биомедицинских исследований. 2021;1. URL: https://cyberleninka.ru/article/n/bioinformaticheskie-instrumenty-i-internet-resursy-dlya-otsenki-regulyatornogo-potentsiala-polimorfnyh-lokusov-ustanovlennyh
63. Abdellaoui A. et al. 15 years of GWAS discovery: Realizing the promise. Am. J. Hum. Genet. 2023;2;110(2):179–194.
Рецензия
Для цитирования:
Сарманаев С.Х., Суворов Г.Н. Актуальные представления о геноме и его значение в формировании зависимости от психоактивных веществ. Клиническая медицина. 2025;103(4):272-278. https://doi.org/10.30629/0023-2149-2025-103-4-272-278
For citation:
Sarmanaev S.Kh., Suvorov G.N. Current insights into the genome, substance addiction and homo delinquent comorbidity. Clinical Medicine (Russian Journal). 2025;103(4):272-278. (In Russ.) https://doi.org/10.30629/0023-2149-2025-103-4-272-278